735 research outputs found

    Modeling Text Independent Speaker Identification with Vector Quantization

    Get PDF
    Speaker identification is one of the most important technology nowadays. Many fields such as bioinformatics and security are using speaker identification. Also, almost all electronic devices are using this technology too. Based on number of text, speaker identification divided into text dependent and text independent. On many fields, text independent is mostly used because number of text is unlimited. So, text independent is generally more challenging than text dependent. In this research, speaker identification text independent with Indonesian speaker data was modelled with Vector Quantization (VQ). In this research VQ with K-Means initialization was used. K-Means clustering also was used to initialize mean and Hierarchical Agglomerative Clustering was used to identify K value for VQ. The best VQ accuracy was 59.67% when k was 5. According to the result, Indonesian language could be modelled by VQ. This research can be developed using optimization method for VQ parameters such as Genetic Algorithm or Particle Swarm Optimization

    Fluid segmentation in Neutrosophic domain

    Full text link
    Optical coherence tomography (OCT) as retina imaging technology is currently used by ophthalmologist as a non-invasive and non-contact method for diagnosis of agerelated degeneration (AMD) and diabetic macular edema (DME) diseases. Fluid regions in OCT images reveal the main signs of AMD and DME. In this paper, an efficient and fast clustering in neutrosophic (NS) domain referred as neutrosophic C-means is adapted for fluid segmentation. For this task, a NCM cost function in NS domain is adapted for fluid segmentation and then optimized by gradient descend methods which leads to binary segmentation of OCT Bscans to fluid and tissue regions. The proposed method is evaluated in OCT datasets of subjects with DME abnormalities. Results showed that the proposed method outperforms existing fluid segmentation methods by 6% in dice coefficient and sensitivity criteria

    An Ant Colony Optimization Based Feature Selection for Web Page Classification

    Get PDF
    The increased popularity of the web has caused the inclusion of huge amount of information to the web, and as a result of this explosive information growth, automated web page classification systems are needed to improve search engines’ performance. Web pages have a large number of features such as HTML/XML tags, URLs, hyperlinks, and text contents that should be considered during an automated classification process. The aim of this study is to reduce the number of features to be used to improve runtime and accuracy of the classification of web pages. In this study, we used an ant colony optimization (ACO) algorithm to select the best features, and then we applied the well-known C4.5, naive Bayes, and k nearest neighbor classifiers to assign class labels to web pages. We used the WebKB and Conference datasets in our experiments, and we showed that using the ACO for feature selection improves both accuracy and runtime performance of classification. We also showed that the proposed ACO based algorithm can select better features with respect to the well-known information gain and chi square feature selection methods

    Measuring memetic algorithm performance on image fingerprints dataset

    Get PDF
    Personal identification has become one of the most important terms in our society regarding access control, crime and forensic identification, banking and also computer system. The fingerprint is the most used biometric feature caused by its unique, universality and stability. The fingerprint is widely used as a security feature for forensic recognition, building access, automatic teller machine (ATM) authentication or payment. Fingerprint recognition could be grouped in two various forms, verification and identification. Verification compares one on one fingerprint data. Identification is matching input fingerprint with data that saved in the database. In this paper, we measure the performance of the memetic algorithm to process the image fingerprints dataset. Before we run this algorithm, we divide our fingerprints into four groups according to its characteristics and make 15 specimens of data, do four partial tests and at the last of work we measure all computation time

    Genetic Algorithm for Combined Speaker and Speech Recognition using Deep Neural Networks, Journal of Telecommunications and Information Technology, 2018, nr 2

    Get PDF
    Huge growth is observed in the speech and speaker recognition field due to many artificial intelligence algorithms being applied. Speech is used to convey messages via the language being spoken, emotions, gender and speaker identity. Many real applications in healthcare are based upon speech and speaker recognition, e.g. a voice-controlled wheelchair helps control the chair. In this paper, we use a genetic algorithm (GA) for combined speaker and speech recognition, relying on optimized Mel Frequency Cepstral Coefficient (MFCC) speech features, and classification is performed using a Deep Neural Network (DNN). In the first phase, feature extraction using MFCC is executed. Then, feature optimization is performed using GA. In the second phase training is conducted using DNN. Evaluation and validation of the proposed work model is done by setting a real environment, and efficiency is calculated on the basis of such parameters as accuracy, precision rate, recall rate, sensitivity, and specificity. Also, this paper presents an evaluation of such feature extraction methods as linear predictive coding coefficient (LPCC), perceptual linear prediction (PLP), mel frequency cepstral coefficients (MFCC) and relative spectra filtering (RASTA), with all of them used for combined speaker and speech recognition systems. A comparison of different methods based on existing techniques for both clean and noisy environments is made as well

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS

    Resume

    Get PDF
    corecore