615 research outputs found

    Compressed Sensing based Dynamic PSD Map Construction in Cognitive Radio Networks

    Get PDF
    In the context of spectrum sensing in cognitive radio networks, collaborative spectrum sensing has been proposed as a way to overcome multipath and shadowing, and hence increasing the reliability of the sensing. Due to the high amount of information to be transmitted, a dynamic compressive sensing approach is proposed to map the PSD estimate to a sparse domain which is then transmitted to the fusion center. In this regard, CRs send a compressed version of their estimated PSD to the fusion center, whose job is to reconstruct the PSD estimates of the CRs, fuse them, and make a global decision on the availability of the spectrum in space and frequency domains at a given time. The proposed compressive sensing based method considers the dynamic nature of the PSD map, and uses this dynamicity in order to decrease the amount of data needed to be transmitted between CR sensors’ and the fusion center. By using the proposed method, an acceptable PSD map for cognitive radio purposes can be achieved by only 20 % of full data transmission between sensors and master node. Also, simulation results show the robustness of the proposed method against the channel variations, diverse compression ratios and processing times in comparison with static methods

    Exploring deep learning for adaptive energy detection threshold determination: A multistage approach

    Get PDF
    The concept of spectrum sensing has emerged as a fundamental solution to address the growing demand for accessing the limited resources of wireless communications networks. This paper introduces a straightforward yet efficient approach that incorporates multiple stages that are based on deep learning (DL) techniques to mitigate Radio Frequency (RF) impairments and estimate the transmitted signal using the time domain representation of received signal samples. The proposed method involves calculating the energies of the estimated transmitted signal samples and received signal samples and estimating the energy of the noise using these estimates. Subsequently, the received signal energy and the estimated noise energy, adjusted by a correction factor (k), are employed in binary hypothesis testing to determine the occupancy of the wireless channel under investigation. The proposed system demonstrates encouraging outcomes by effectively mitigating RF impairments, such as carrier frequency offset (CFO), phase offset, and additive white Gaussian noise (AWGN), to a considerable degree. As a result, it enables accurate estimation of the transmitted signal from the received signal, with 3.85% false alarm and 3.06% missed detection rates, underscoring the system’s capability to adaptively determine a decision threshold for energy detection.European Union’s H2020 Framework Programm

    A Unified Multi-Functional Dynamic Spectrum Access Framework: Tutorial, Theory and Multi-GHz Wideband Testbed

    Get PDF
    Dynamic spectrum access is a must-have ingredient for future sensors that are ideally cognitive. The goal of this paper is a tutorial treatment of wideband cognitive radio and radar—a convergence of (1) algorithms survey, (2) hardware platforms survey, (3) challenges for multi-function (radar/communications) multi-GHz front end, (4) compressed sensing for multi-GHz waveforms—revolutionary A/D, (5) machine learning for cognitive radio/radar, (6) quickest detection, and (7) overlay/underlay cognitive radio waveforms. One focus of this paper is to address the multi-GHz front end, which is the challenge for the next-generation cognitive sensors. The unifying theme of this paper is to spell out the convergence for cognitive radio, radar, and anti-jamming. Moore’s law drives the system functions into digital parts. From a system viewpoint, this paper gives the first comprehensive treatment for the functions and the challenges of this multi-function (wideband) system. This paper brings together the inter-disciplinary knowledge

    Topology Control, Scheduling, and Spectrum Sensing in 5G Networks

    Get PDF
    The proliferation of intelligent wireless devices is remarkable. To address phenomenal traffic growth, a key objective of next-generation wireless networks such as 5G is to provide significantly larger bandwidth. To this end, the millimeter wave (mmWave) band (20 GHz -300 GHz) has been identified as a promising candidate for 5G and WiFi networks to support user data rates of multi-gigabits per second. However, path loss at mmWave is significantly higher than today\u27s cellular bands. Fortunately, this higher path loss can be compensated through the antenna beamforming technique-a transmitter focuses a signal towards a specific direction to achieve high signal gain at the receiver. In the beamforming mmWave network, two fundamental challenges are network topology control and user association and scheduling. This dissertation proposes solutions to address these two challenges. We also study a spectrum sensing scheme which is important for spectrum sharing in next-generation wireless networks. Due to beamforming, the network topology control in mmWave networks, i.e., how to determine the number of beams for each base station and the beam coverage, is a great challenge. We present a novel framework to solve this problem, termed Beamforming Oriented tOpology coNtrol (BOON). The objective is to reduce total downlink transmit power of base stations in order to provide coverage of all users with a minimum quality of service. BOON smartly groups nearby user equipment into clusters to dramatically reduce interference between beams and base stations so that we can significantly reduce transmit power from the base station. We have found that on average BOON uses only 10%, 32%, and 25% transmit power of three state-of-the-art schemes in the literature. Another fundamental problem in the mmWave network is the user association and traffic scheduling, i.e., associating users to base stations, and scheduling transmission of user traffic over time slots. This is because base station has a limited power budget and users have very diverse traffic, and also require some minimum quality of service. User association is challenging because it generally does not rely on the user distance to surrounding base stations but depends on if a user is covered by a beam. We develop a novel framework for user association and scheduling in multi-base station mmWave networks, termed the clustering Based dOwnlink user assOciation Scheduling, beamforming with power allocaTion (BOOST). The objective is to reduce the downlink network transmission time of all users\u27 traffic. On average, BOOST reduces the transmission time by 37%, 30%, and 26% compared with the three state-of-the-art user scheduling schemes in the literature. At last, we present a wavelet transform based spectrum sensing scheme that can simultaneously sense multiple subbands, even without knowing how the subbands are divided, i.e., their boundaries. It can adaptively detect all active subband signals and, thus, discover the residual spectrum that can be used by unlicensed devices

    Emerging Approaches for THz Array Imaging: A Tutorial Review and Software Tool

    Full text link
    Accelerated by the increasing attention drawn by 5G, 6G, and Internet of Things applications, communication and sensing technologies have rapidly evolved from millimeter-wave (mmWave) to terahertz (THz) in recent years. Enabled by significant advancements in electromagnetic (EM) hardware, mmWave and THz frequency regimes spanning 30 GHz to 300 GHz and 300 GHz to 3000 GHz, respectively, can be employed for a host of applications. The main feature of THz systems is high-bandwidth transmission, enabling ultra-high-resolution imaging and high-throughput communications; however, challenges in both the hardware and algorithmic arenas remain for the ubiquitous adoption of THz technology. Spectra comprising mmWave and THz frequencies are well-suited for synthetic aperture radar (SAR) imaging at sub-millimeter resolutions for a wide spectrum of tasks like material characterization and nondestructive testing (NDT). This article provides a tutorial review of systems and algorithms for THz SAR in the near-field with an emphasis on emerging algorithms that combine signal processing and machine learning techniques. As part of this study, an overview of classical and data-driven THz SAR algorithms is provided, focusing on object detection for security applications and SAR image super-resolution. We also discuss relevant issues, challenges, and future research directions for emerging algorithms and THz SAR, including standardization of system and algorithm benchmarking, adoption of state-of-the-art deep learning techniques, signal processing-optimized machine learning, and hybrid data-driven signal processing algorithms...Comment: Submitted to Proceedings of IEE
    corecore