32 research outputs found

    A Channel Ranking And Selection Scheme Based On Channel Occupancy And SNR For Cognitive Radio Systems

    Get PDF
    Wireless networks and information traffic have grown exponentially over the last decade. Consequently, an increase in demand for radio spectrum frequency bandwidth has resulted. Recent studies have shown that with the current fixed spectrum allocation (FSA), radio frequency band utilization ranges from 15% to 85%. Therefore, there are spectrum holes that are not utilized all the time by the licensed users, and, thus the radio spectrum is inefficiently exploited. To solve the problem of scarcity and inefficient utilization of the spectrum resources, dynamic spectrum access has been proposed as a solution to enable sharing and using available frequency channels. With dynamic spectrum allocation (DSA), unlicensed users can access and use licensed, available channels when primary users are not transmitting. Cognitive Radio technology is one of the next generation technologies that will allow efficient utilization of spectrum resources by enabling DSA. However, dynamic spectrum allocation by a cognitive radio system comes with the challenges of accurately detecting and selecting the best channel based on the channelâs availability and quality of service. Therefore, the spectrum sensing and analysis processes of a cognitive radio system are essential to make accurate decisions. Different spectrum sensing techniques and channel selection schemes have been proposed. However, these techniques only consider the spectrum occupancy rate for selecting the best channel, which can lead to erroneous decisions. Other communication parameters, such as the Signal-to-Noise Ratio (SNR) should also be taken into account. Therefore, the spectrum decision-making process of a cognitive radio system must use techniques that consider spectrum occupancy and channel quality metrics to rank channels and select the best option. This thesis aims to develop a utility function based on spectrum occupancy and SNR measurements to model and rank the sensed channels. An evolutionary algorithm-based SNR estimation technique was developed, which enables adaptively varying key parameters of the existing Eigenvalue-based blind SNR estimation technique. The performance of the improved technique is compared to the existing technique. Results show the evolutionary algorithm-based estimation performing better than the existing technique. The utility-based channel ranking technique was developed by first defining channel utility function that takes into account SNR and spectrum occupancy. Different mathematical functions were investigated to appropriately model the utility of SNR and spectrum occupancy rate. A ranking table is provided with the utility values of the sensed channels and compared with the usual occupancy rate based channel ranking. According to the results, utility-based channel ranking provides a better scope of making an informed decision by considering both channel occupancy rate and SNR. In addition, the efficiency of several noise cancellation techniques was investigated. These techniques can be employed to get rid of the impact of noise on the received or sensed signals during spectrum sensing process of a cognitive radio system. Performance evaluation of these techniques was done using simulations and the results show that the evolutionary algorithm-based noise cancellation techniques, particle swarm optimization and genetic algorithm perform better than the regular gradient descent based technique, which is the least-mean-square algorithm

    Interference mitigation techniques for wireless OFDM

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a promising multicarrier wireless system for transmission of high-rate data stream with spectral efficiency and fading immunity. Conventional OFDM system use efficient IFFT and FFT to multiplex the signals in parallel at the transmitter and receiver respectively. On the other hand, wavelet based OFDM system uses orthonormal wavelets which are derived from a multistage tree-structured wavelet family. The Fourier based and wavelet based OFDM systems are studied in this dissertation. Two types of QAM schemes, circular and square modulations are used to compare the performance in both OFDM systems. A new approach of determining exact BER for optimal circular QAM is proposed. In addition, the presence of narrowband interference (NBI) degrades the performance of OFDM systems. Thus, a mitigation technique is necessary to suppress NBI in an OFDM system. Recent mitigation techniques can be broadly categorized into frequency domain cancellation, receiver windowing and excision filtering. However, none of the techniques considers wavelet based OFDM. Therefore, an interference cancelation algorithm has been proposed to work for both OFDM platforms. The performance results of two OFDM schemes applicable to digital video broadcasting (DVB)-terrestrial system and under the effect of impulsive noise interference are also studied. BER performances are obtained in all results. It has been shown that wavelet based OFDM system has outperformed Fourier based OFDM system in many cases

    Roadmap on signal processing for next generation measurement systems

    Get PDF
    Signal processing is a fundamental component of almost any sensor-enabled system, with a wide range of applications across different scientific disciplines. Time series data, images, and video sequences comprise representative forms of signals that can be enhanced and analysed for information extraction and quantification. The recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing. This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems. It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field. Furthermore, it offers guidance to researchers and funding agencies in identifying new prospects.AerodynamicsMicrowave Sensing, Signals & System
    corecore