46 research outputs found

    Investigation of Coastal Vegetation Dynamics and Persistence in Response to Hydrologic and Climatic Events Using Remote Sensing

    Get PDF
    Coastal Wetlands (CW) provide numerous imperative functions and provide an economic base for human societies. Therefore, it is imperative to track and quantify both short and long-term changes in these systems. In this dissertation, CW dynamics related to hydro-meteorological signals were investigated using a series of LANDSAT-derived normalized difference vegetation index (NDVI) data and hydro-meteorological time-series data in Apalachicola Bay, Florida, from 1984 to 2015. NDVI in forested wetlands exhibited more persistence compared to that for scrub and emergent wetlands. NDVI fluctuations generally lagged temperature by approximately three months, and water level by approximately two months. This analysis provided insight into long-term CW dynamics in the Northern Gulf of Mexico. Long-term studies like this are dependent on optical remote sensing data such as Landsat which is frequently partially obscured due to clouds and this can that makes the time-series sparse and unusable during meteorologically active seasons. Therefore, a multi-sensor, virtual constellation method is proposed and demonstrated to recover the information lost due to cloud cover. This method, named Tri-Sensor Fusion (TSF), produces a simulated constellation for NDVI by integrating data from three compatible satellite sensors. The visible and near-infrared (VNIR) bands of Landsat-8 (L8), Sentinel-2, and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were utilized to map NDVI and to compensate each satellite sensor\u27s shortcomings in visible coverage area. The quantitative comparison results showed a Root Mean Squared Error (RMSE) and Coefficient of Determination (R2) of 0.0020 sr-1 and 0.88, respectively between true observed and fused L8 NDVI. Statistical test results and qualitative performance evaluation suggest that TSF was able to synthesize the missing pixels accurately in terms of the absolute magnitude of NDVI. The fusion improved the spatial coverage of CWs reasonably well and ultimately increases the continuity of NDVI data for long term studies

    Semi-supervised learning with constrained virtual support vector machines for classification of remote sensing image data

    Get PDF
    We introduce two semi-supervised models for the classification of remote sensing image data. The models are built upon the framework of Virtual Support Vector Machines (VSVM). Generally, VSVM follow a two-step learning procedure: A Support Vector Machines (SVM) model is learned to determine and extract labeled samples that constitute the decision boundary with the maximum margin between thematic classes, i.e., the Support Vectors (SVs). The SVs govern the creation of so-called virtual samples. This is done by modifying, i.e., perturbing, the image features to which a decision boundary needs to be invariant. Subsequently, the classification model is learned for a second time by using the newly created virtual samples in addition to the SVs to eventually find a new optimal decision boundary. Here, we extend this concept by (i) integrating a constrained set of semilabeled samples when establishing the final model. Thereby, the model constrainment, i.e., the selection mechanism for including solely informative semi-labeled samples, is built upon a self-learning procedure composed of two active learning heuristics. Additionally, (ii) we consecutively deploy semi-labeled samples for the creation of semi-labeled virtual samples by modifying the image features of semi-labeled samples that have become semi-labeled SVs after an initial model run. We present experimental results from classifying two multispectral data sets with a sub-meter geometric resolution. The proposed semi-supervised VSVM models exhibit the most favorable performance compared to related SVM and VSVM-based approaches, as well as (semi-)supervised CNNs, in situations with a very limited amount of available prior knowledge, i.e., labeled samples

    Signal processing algorithms for enhanced image fusion performance and assessment

    Get PDF
    The dissertation presents several signal processing algorithms for image fusion in noisy multimodal conditions. It introduces a novel image fusion method which performs well for image sets heavily corrupted by noise. As opposed to current image fusion schemes, the method has no requirements for a priori knowledge of the noise component. The image is decomposed with Chebyshev polynomials (CP) being used as basis functions to perform fusion at feature level. The properties of CP, namely fast convergence and smooth approximation, renders it ideal for heuristic and indiscriminate denoising fusion tasks. Quantitative evaluation using objective fusion assessment methods show favourable performance of the proposed scheme compared to previous efforts on image fusion, notably in heavily corrupted images. The approach is further improved by incorporating the advantages of CP with a state-of-the-art fusion technique named independent component analysis (ICA), for joint-fusion processing based on region saliency. Whilst CP fusion is robust under severe noise conditions, it is prone to eliminating high frequency information of the images involved, thereby limiting image sharpness. Fusion using ICA, on the other hand, performs well in transferring edges and other salient features of the input images into the composite output. The combination of both methods, coupled with several mathematical morphological operations in an algorithm fusion framework, is considered a viable solution. Again, according to the quantitative metrics the results of our proposed approach are very encouraging as far as joint fusion and denoising are concerned. Another focus of this dissertation is on a novel metric for image fusion evaluation that is based on texture. The conservation of background textural details is considered important in many fusion applications as they help define the image depth and structure, which may prove crucial in many surveillance and remote sensing applications. Our work aims to evaluate the performance of image fusion algorithms based on their ability to retain textural details from the fusion process. This is done by utilising the gray-level co-occurrence matrix (GLCM) model to extract second-order statistical features for the derivation of an image textural measure, which is then used to replace the edge-based calculations in an objective-based fusion metric. Performance evaluation on established fusion methods verifies that the proposed metric is viable, especially for multimodal scenarios

    Classifying multisensor remote sensing data : Concepts, Algorithms and Applications

    Get PDF
    Today, a large quantity of the Earth’s land surface has been affected by human induced land cover changes. Detailed knowledge of the land cover is elementary for several decision support and monitoring systems. Earth-observation (EO) systems have the potential to frequently provide information on land cover. Thus many land cover classifications are performed based on remotely sensed EO data. In this context, it has been shown that the performance of remote sensing applications is further improved by multisensor data sets, such as combinations of synthetic aperture radar (SAR) and multispectral imagery. The two systems operate in different wavelength domains and therefore provide different yet complementary information on land cover. Considering the increase in revisit times and better spatial resolutions of recent and upcoming systems like TerraSAR-X (11 days; up to1 m), Radarsat-2 (24 days; up to 3 m), or RapidEye constellation (up to 1 day; 5 m), multisensor approaches become even more promising. However, these data sets with high spatial and temporal resolution might become very large and complex. Commonly used statistical pattern recognition methods are usually not appropriate for the classification of multisensor data sets. Hence, one of the greatest challenges in remote sensing might be the development of adequate concepts for classifying multisensor imagery. The presented study aims at an adequate classification of multisensor data sets, including SAR data and multispectral images. Different conventional classifiers and recent developments are used, such as support vector machines (SVM) and random forests (RF), which are well known in the field of machine learning and pattern recognition. Furthermore, the impact of image segmentation on the classification accuracy is investigated and the value of a multilevel concept is discussed. To increase the performance of the algorithms in terms of classification accuracy, the concept of SVM is modified and combined with RF for optimized decision making. The results clearly demonstrate that the use of multisensor imagery is worthwhile. Irrespective of the classification method used, classification accuracies increase by combining SAR and multispectral imagery. Nevertheless, SVM and RF are more adequate for classifying multisensor data sets and significantly outperform conventional classifier algorithms in terms of accuracy. The finally introduced multisensor-multilevel classification strategy, which is based on the sequential use of SVM and RF, outperforms all other approaches. The proposed concept achieves an accuracy of 84.9%. This is significantly higher than all single-source results and also better than those achieved on any other combination of data. Both aspects, i.e. the fusion of SAR and multispectral data as well as the integration of multiple segmentation scales, improve the results. Contrary to the high accuracy value by the proposed concept, the pixel-based classification on single-source data sets achieves a maximal accuracy of 65% (SAR) and 69.8% (multispectral) respectively. The findings and good performance of the presented strategy are underlined by the successful application of the approach to data sets from a second year. Based on the results from this work it can be concluded that the suggested strategy is particularly interesting with regard to recent and future satellite missions

    Water quality grade identification for lakes in middle reaches of Yangtze River using landsat-8 data with deep neural networks (DNN) model

    Get PDF
    Water quality grade is an intuitive element for people to understand the condition of water quality. However, in situ water quality grade measurements are often labor intensive, which makes measurement over large areas very costly and laborious. In recent years, numerous studies have demonstrated the effectiveness of remote sensing techniques in monitoring water quality. In order to automatically extract the water quality information, machine learning technologies have been widely applied in remote sensing data interoperation. In this study, Landsat-8 data and deep neural networks (DNN) were employed to identify the water quality grades of lakes in two cities, Wuhan and Huangshi, in the middle reach of the Yangtze River, central China. Additionally, linear support vector machine (L-SVM), random forest (RF), decision tree (DT), and multi-layer perceptron (MLP) were selected as comparative methods. The experimental results showed that DNN achieved the most promising performance compared to the other approaches. For the lakes in Wuhan, DNN gave water quality results with overall accuracy (OA) of 93.37% and Kappa of 0.9028. For the lakes in Huangshi, OA and kappa given by DNN were 96.39% and 0.951, respectively. The results show that the use of remote sensing images for water quality grade monitoring is effective. In the future, our method can be used for water quality monitoring of lakes in large areas at a low cost

    Remote Sensing in Mangroves

    Get PDF
    The book highlights recent advancements in the mapping and monitoring of mangrove forests using earth observation satellite data. New and historical satellite data and aerial photographs have been used to map the extent, change and bio-physical parameters, such as phenology and biomass. Research was conducted in different parts of the world. Knowledge and understanding gained from this book can be used for the sustainable management of mangrove forests of the worl

    Applications of Satellite Earth Observations section - NEODAAS: Providing satellite data for efficient research

    Get PDF
    The NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) provides a central point of Earth Observation (EO) satellite data access and expertise for UK researchers. The service is tailored to individual users’ requirements to ensure that researchers can focus effort on their science, rather than struggling with correct use of unfamiliar satellite data

    Satellite monitoring of harmful algal blooms (HABs) to protect the aquaculture industry

    Get PDF
    Harmful algal blooms (HABs) can cause sudden and considerable losses to fish farms, for example 500,000 salmon during one bloom in Shetland, and also present a threat to human health. Early warning allows the industry to take protective measures. PML's satellite monitoring of HABs is now funded by the Scottish aquaculture industry. The service involves processing EO ocean colour data from NASA and ESA in near-real time, and applying novel techniques for discriminating certain harmful blooms from harmless algae. Within the AQUA-USERS project we are extending this capability to further HAB species within several European countries

    The application of deep learning for remote sensing of soil organic carbon stocks distribution in South Africa.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.Soil organic carbon (SOC) is a vital measure for ecosystem health and offers opportunities to understand carbon fluxes and associated implications. However, unprecedented anthropogenic disturbances have significantly altered SOC distribution across the globe, leading to considerable carbon losses. In addition, reliable SOC estimates, particularly over large spatial extents remain a major challenge due to among others limited sample points, quality of simulation data and suitable algorithms. Remote sensing (RS) approaches have emerged as a suitable alternative to field and laboratory SOC determination, especially at large spatial extent. Nevertheless, reliable determination of SOC distribution using RS data requires robust analytical approaches. Compared to linear and classical machine learning (ML) models, deep learning (DL) models offer a considerable improvement in data analysis due to their ability to extract more representative features and identify complex spatial patterns associated with big data. Hence, advancements in remote sensing, proliferation of big data, and deep learning architecture offer great potential for large-scale SOC mapping. However, there is paucity in literature on the application of DL-based remote sensing approaches for SOC prediction. To this end, this study is aimed at exploring DL-based approaches for the remote sensing of SOC stocks distribution across South Africa. The first objective sought to provide a synopsis of the use of traditional neural network (TNN) and DL-based remote sensing of SOC with emphasis on basic concepts, differences, similarities and limitations, while the second objective provided an in-depth review of the history, utility, challenges, and prospects of DL-based remote sensing approaches for mapping SOC. A quantitative evaluation between the use of TNN and DL frameworks was also conducted. Findings show that majority of published literature were conducted in the Northern Hemisphere while Africa have only four publications. Results also reveal that most studies adopted hyperspectral data, particularly spectrometers as compared to multispectral data. In comparison to DL (10%), TNN (90%) models were more commonly utilized in the literature; yet, DL models produced higher median accuracy (93%) than TNN (85%) models. The review concludes by highlighting future opportunities for retrieving SOC from remotely sensed data using DL frameworks. The third objective compared the accuracy of DL—deep neural network (DNN) model and a TNN—artificial neural network (ANN), as well as other popular classical ML models that include random forest (RF) and support vector machine (SVM), for national scale SOC mapping using Sentinel-3 data. With a root mean square error (RMSE) of 10.35 t/ha, the DNN model produced the best results, followed by RF (11.2 t/ha), ANN (11.6 t/ha), and SVM (13.6 t/ha). The DNN's analytical abilities, combined with its capacity to handle large amounts of data is a key advantage over other classical ML models. Having established the superiority of DL models over TNN and other classical models, the fourth objective focused on investigating SOC stocks distribution across South Africa’s major land uses, using Deep Neural Networks (DNN) and Sentinel-3 satellite data. Findings show that grasslands contributed the most to overall SOC stocks (31.36 %), while urban vegetation contributed the least (0.04%). Results also show that commercial (46.06 t/h) and natural (44.34 t/h) forests had better carbon sequestration capacity than other classes. These findings provide an important guideline for managing SOC stocks in South Africa, useful in climate change mitigation by promoting sustainable land-use practices. The fifth objective sought to determine the distribution of SOC within South Africa’s major biomes using remotely sensed-topo-climatic data and Concrete Autoencoder-Deep Neural Networks (CAE-DNN). Findings show that the CAE-DNN model (built from 26 selected variables) had the best accuracy of the DNNs examined, with an RMSE of 7.91 t/h. Soil organic carbon stock was also shown to be related to biome coverage, with the grassland (32.38%) and savanna (31.28%) biomes contributing the most to the overall SOC pool in South Africa. forests (44.12 t/h) and the Indian ocean coastal belt (43.05 t/h) biomes, despite having smaller footprints, have the highest SOC sequestration capacity. To increase SOC storage, it is recommended that degraded biomes be restored; however, a balance must be maintained between carbon sequestration capability, biodiversity health, and adequate provision of ecosystem services. The sixth objective sought to project the present SOC stocks in South Africa into the future (i.e. 2050). Soil organic carbon variations generated by projected climate change and land cover were mapped and analysed using a digital soil mapping (DSM) technique combined with space-for-time substitution (SFTS) procedures over South Africa through 2050. The potential SOC stocks variations across South Africa's major land uses were also assessed from current (2021) to future (2050). The first part of the study uses a Deep Neural Network (DNN) to estimate current SOC content (2021), while the second phase uses an average of five WorldClim General Circulation Models to project SOC to the future (2050) under four Shared Socio-economic Pathways (SSPs). Results show a general decline in projected future SOC stocks by 2050, ranging from 4.97 to 5.38 Pg, compared to estimated current stocks of 5.64 Pg. The findings are critical for government and policymakers in assessing the efficacy of current management systems in South Africa. Overall, this study provides a cost-effective framework for national scale mapping of SOC stocks, which is the largest terrestrial carbon pool using advanced DL-based remote sensing approach. These findings are valuable for designing appropriate management strategies to promote carbon uptake, soil quality, and measuring terrestrial ecosystem responses and feedbacks to climate change. This study is also the first DL-based remote sensing of SOC stocks distribution in South Africa
    corecore