229 research outputs found

    Detect-and-forward relaying aided cooperative spatial modulation for wireless networks

    No full text
    A novel detect-and-forward (DeF) relaying aided cooperative SM scheme is proposed, which is capable of striking a flexible tradeoff in terms of the achievable bit error ratio (BER), complexity and unequal error protection (UEP). More specifically, SM is invoked at the source node (SN) and the information bit stream is divided into two different sets: the antenna index-bits (AI-bits) as well as the amplitude and phase modulation-bits (APM-bits). By exploiting the different importance of the AI-bits and the APM-bits in SM detection, we propose three low-complexity, yet powerful relay protocols, namely the partial, the hybrid and the hierarchical modulation (HM) based DeF relaying schemes. These schemes determine the most appropriate number of bits to be re-modulated by carefully considering their potential benefits and then assigning a specific modulation scheme for relaying the message. As a further benefit, the employment of multiple radio frequency (RF) chains and the requirement of tight inter-relay synchronization (IRS) can be avoided. Moreover, by exploiting the benefits of our low-complexity relaying protocols and our inter-element interference (IEI) model, a low-complexity maximum-likelihood (ML) detector is proposed for jointly detecting the signal received both via the source-destination (SD) and relay-destination (RD) links. Additionally, an upper bound of the BER is derived for our DeF-SM scheme. Our numerical results show that the bound is asymptotically tight in the high-SNR region and the proposed schemes provide beneficial system performance improvements compared to the conventional MIMO schemes in an identical cooperative scenario.<br/

    Error probability and capacity analysis of generalised pre-coding aided spatial modulation

    No full text
    The recently proposed multiple input multiple output (MIMO) transmission scheme termed as generalized pre-coding aided spatial modulation (GPSM) is analyzed, where the key idea is that a particular subset of receive antennas is activated and the specific activation pattern itself conveys useful implicit information. We provide the upper bound of both the symbol error ratio (SER) and bit error ratio (BER) expression of the GPSM scheme of a low-complexity decoupled detector. Furthermore, the corresponding discrete-input continuous-output memoryless channel (DCMC) capacity as well as the achievable rate is quantified. Our analytical SER and BER upper bound expressions are confirmed to be tight by our numerical results. We also show that our GPSM scheme constitutes a flexible MIMO arrangement and there is always a beneficial configuration for our GPSM scheme that offers the same bandwidth efficiency as that of its conventional MIMO counterpart at a lower signal to noise ratio (SNR) per bit

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    High capacity multiuser multiantenna communication techniques

    Get PDF
    One of the main issues involved in the development of future wireless communication systems is the multiple access technique used to efficiently share the available spectrum among users. In rich multipath environment, spatial dimension can be exploited to meet the increasing number of users and their demands without consuming extra bandwidth and power. Therefore, it is utilized in the multiple-input multiple-output (MIMO) technology to increase the spectral efficiency significantly. However, multiuser MIMO (MU-MIMO) systems are still challenging to be widely adopted in next generation standards. In this thesis, new techniques are proposed to increase the channel and user capacity and improve the error performance of MU-MIMO over Rayleigh fading channel environment. For realistic system design and performance evaluation, channel correlation is considered as one of the main channel impurities due its severe influence on capacity and reliability. Two simple methods called generalized successive coloring technique (GSCT) and generalized iterative coloring technique (GICT) are proposed for accurate generation of correlated Rayleigh fading channels (CRFC). They are designed to overcome the shortcomings of existing methods by avoiding factorization of desired covariance matrix of the Gaussian samples. The superiority of these techniques is demonstrated by extensive simulations of different practical system scenarios. To mitigate the effects of channel correlations, a novel constellation constrained MU-MIMO (CC-MU-MIMO) scheme is proposed using transmit signal design and maximum likelihood joint detection (MLJD) at the receiver. It is designed to maximize the channel capacity and error performance based on principles of maximizing the minimum Euclidean distance (dmin) of composite received signals. Two signal design methods named as unequal power allocation (UPA) and rotation constellation (RC) are utilized to resolve the detection ambiguity caused by correlation. Extensive analysis and simulations demonstrate the effectiveness of considered scheme compared with conventional MU-MIMO. Furthermore, significant gain in SNR is achieved particularly in moderate to high correlations which have direct impact to maintain high user capacity. A new efficient receive antenna selection (RAS) technique referred to as phase difference based selection (PDBS) is proposed for single and multiuser MIMO systems to maximize the capacity over CRFC. It utilizes the received signal constellation to select the subset of antennas with highest (dmin) constellations due to its direct impact on the capacity and BER performance. A low complexity algorithm is designed by employing the Euclidean norm of channel matrix rows with their corresponding phase differences. Capacity analysis and simulation results show that PDBS outperforms norm based selection (NBS) and near to optimal selection (OS) for all correlation and SNR values. This technique provides fast RAS to capture most of the gains promised by multiantenna systems over different channel conditions. Finally, novel group layered MU-MIMO (GL-MU-MIMO) scheme is introduced to exploit the available spectrum for higher user capacity with affordable complexity. It takes the advantages of spatial difference among users and power control at base station to increase the number of users beyond the available number of RF chains. It is achieved by dividing the users into two groups according to their received power, high power group (HPG) and low power group (LPG). Different configurations of low complexity group layered multiuser detection (GL-MUD) and group power allocation ratio (η) are utilized to provide a valuable tradeoff between complexity and overall system performance. Furthermore, RAS diversity is incorporated by using NBS and a new selection algorithm called HPG-PDBS to increase the channel capacity and enhance the error performance. Extensive analysis and simulations demonstrate the superiority of proposed scheme compared with conventional MU-MIMO. By using appropriate value of (η), it shows higher sum rate capacity and substantial increase in the user capacity up to two-fold at target BER and SNR values

    Wireless Channel Model and LDM-Based Transmission with Unequal Error Protection for Inside Train Communications

    Get PDF
    Although the deployment of wireless systems is widespread, there are still sectors where they are not used due to their lack of reliability in comparison to wired systems. Sectors like industry or vehicle communications consider their environment hostile because the wireless signals suffer a lot of interferences. One of such environments is the railway sector, where wiring removal will allow more flexibility for both control and monitoring systems. This thesis analyzes wireless communications inside train cars, aiming at modelling their behavior and at proposing techniques to increase the reliability of the critical signals among train systems, wich can coexist with other lower priority systems. After proposing a novel model of an inside train wireless channel, a transmission system based on Layered Division Multiplexing (LDM) has been proposed which theoretically promises higher capacities than traditional TDM or FDM. This capacity gain is used to provide higher reliability to critical data using Unequal Error Protection (UEP) while maintaining the same bit rate as equivalent TDM or FDM based systems. In the final part of the thesis, simulation results of the proposed LDM system are provided, combined with Alamouti space time coding and different coding rates. Multiantenna extensions of the proposed LDM schemes are also simulated, providing BER and throughput results. These results will be used to shed light about how to reduce BER of an inside train wireless communication system.Aunque el despliegue de los sistemas inalámbricos está muy extendido, aun hay sectores donde no se utiliza por la poca fiabilidad que proporcionan comparado con los sistemas cableados. Sectores como la industria o las comunicaciones vehiculares consideran el entorno donde trabajan como entorno hostil, debido a que las señales inalámbricas sufren muchas interferencias. Uno de estos entornos es el de las comunicaciones en ferrocarril donde la eliminación de cables permitiría mayor flexibilidad entre los sistemas de control y monitorización. En esta tesis se analiza el canal de comunicación inalámbrico dentro de los trenes, con el objetivo de modelar su comportamiento y proponer técnicas que permitan aumentar la fiabilidad de la información de tipo crítico transmitida entre los sistemas del tren, repercutiendo lo menos posible en otros sistemas de menor prioridad. Tras proponer el modelo de canal inalámbrico dentro del tren, se ha propuesto un sistema de transmisión basado en Layered Division Multiplexing (LDM) que analizándolo teóricamente promete mayores capacidades que los tradicionales TDM o FDM. Esta capacidad se utilizará para obtener mayor redundancia de los datos críticos usando Unequal Error Protection (UEP) manteniendo la misma tasa de transferencia bits que los sistemas basados en TDM/FDM. En la parte final de la tesis, se obtienen resultados de las simulaciones realizadas con el sistema LDM propuesto, combinada con codificación espacio temporal como Alamouti y diferentes ratios de codificación. También se han simulado configuraciones multiantena obteniendo resultados de BER y throughput. Estos resultados servirán para arrojar luz sobre cómo reducir el BER en las comunicaciones inalámbricas dentro de los trenes.Haririk gabeko sistemak oso hedatuak dauden arren oraindik erabiltzen ez dituen sektoreak badaude ematen duten fidagarritasuna txikia delako kableatutako sistemekin alderatuz. Industria bezalako sektoreek edo ibilgailuetako komunikazioek lan egiten duten ingurua oso zaratatsua izaten da eta seinaleek interferentzia asko jasaten dituzte. Tesi honetan tren barruko haririk gabeko komunikazio kanala aztertzen da, bere portaera aztertu eta modelatzeko asmotan. Jakintza honekin zein teknika izan daitekeen erabilgarriak aztertuko da datuen fidagarritasuna handitzeko helburuarekin, lehentasun gutxiago duten sistemetan eragin txikiena izanik. Modeloa atera ondoren proposatu den transmisio sistema Layered Division Multiplexing (LDM) izan da, non azterketa teorikoek TDM edo FDM sistemek baino kapazitate gehiago dutela frogatzen dute. Kapazitate hau sistemaren datu kritikoei erredundantzia gehiago emateko erabiliko da Unequal Error Protection (UEP) erabiliz, TDM/FDM sistemetan bidaltzen den bit tasa kopurua mantenduz. Tesiaren azken partean, proposatutako LDM sistemaren simulazio emaitzak ematen dira, Alamouti espazio denbora kodifikazioarekin konbinatuak eta kodigo ratio desberdinekin. Antena anitzezko konfigurazioak ere simulatu dira BER eta throughput emaitzak lortuz. Emaitza hauek haririk gabeko tren barruko komunikazioetan BER-a nola gutxitu daitekeen jakiten lagunduko digute

    Irregular Variable Length Coding

    Get PDF
    In this thesis, we introduce Irregular Variable Length Coding (IrVLC) and investigate its applications, characteristics and performance in the context of digital multimedia broadcast telecommunications. During IrVLC encoding, the multimedia signal is represented using a sequence of concatenated binary codewords. These are selected from a codebook, comprising a number of codewords, which, in turn, comprise various numbers of bits. However, during IrVLC encoding, the multimedia signal is decomposed into particular fractions, each of which is represented using a different codebook. This is in contrast to regular Variable Length Coding (VLC), in which the entire multimedia signal is encoded using the same codebook. The application of IrVLCs to joint source and channel coding is investigated in the context of a video transmission scheme. Our novel video codec represents the video signal using tessellations of Variable-Dimension Vector Quantisation (VDVQ) tiles. These are selected from a codebook, comprising a number of tiles having various dimensions. The selected tessellation of VDVQ tiles is signalled using a corresponding sequence of concatenated codewords from a Variable Length Error Correction (VLEC) codebook. This VLEC codebook represents a specific joint source and channel coding case of VLCs, which facilitates both compression and error correction. However, during video encoding, only particular combinations of the VDVQ tiles will perfectly tessellate, owing to their various dimensions. As a result, only particular sub-sets of the VDVQ codebook and, hence, of the VLEC codebook may be employed to convey particular fractions of the video signal. Therefore, our novel video codec can be said to employ IrVLCs. The employment of IrVLCs to facilitate Unequal Error Protection (UEP) is also demonstrated. This may be applied when various fractions of the source signal have different error sensitivities, as is typical in audio, speech, image and video signals, for example. Here, different VLEC codebooks having appropriately selected error correction capabilities may be employed to encode the particular fractions of the source signal. This approach may be expected to yield a higher reconstruction quality than equal protection in cases where the various fractions of the source signal have different error sensitivities. Finally, this thesis investigates the application of IrVLCs to near-capacity operation using EXtrinsic Information Transfer (EXIT) chart analysis. Here, a number of component VLEC codebooks having different inverted EXIT functions are employed to encode particular fractions of the source symbol frame. We show that the composite inverted IrVLC EXIT function may be obtained as a weighted average of the inverted component VLC EXIT functions. Additionally, EXIT chart matching is employed to shape the inverted IrVLC EXIT function to match the EXIT function of a serially concatenated inner channel code, creating a narrow but still open EXIT chart tunnel. In this way, iterative decoding convergence to an infinitesimally low probability of error is facilitated at near-capacity channel SNRs

    Optimized Scalable Image and Video Transmission for MIMO Wireless Channels

    Get PDF
    In this chapter, we focus on proposing new strategies to efficiently transfer a compressed image/video content through wireless links using a multiple antenna technology. The proposed solutions can be considered as application layer physical layer (APP-PHY) cross layer design methods as they involve optimizing both application and physical layers. After a wide state-of-the-art study, we present two main solutions. The first focuses on using a new precoding algorithm that takes into account the image/video content structure when assigning transmission powers. We showed that its results are better than the existing conventional precoders. Second, a link adaptation process is integrated to efficiently assign coding parameters as a function of the channel state. Simulations over a realistic channel environment show that the link adaptation activates a dynamic process that results in a good image/video reconstruction quality even if the channel is varying. Finally, we incorporated soft decoding algorithms at the receiver side, and we showed that they could induce further improvements. In fact, almost 5 dB peak signal-to-noise ratio (PSNR) improvements are demonstrated in the case of transmission over a Rayleigh channel
    corecore