372 research outputs found

    A new surface-inset, permanent-magnet, brushless dc motor drive for electric vehicles

    Get PDF
    A new five-phase, surface-inset, permanent-magnet (PM), brushless dc motor drive is proposed in this paper. The motor drive has advantages of both the PM brushless dc motor drive and the dc series motor drive. The originlity is that the air-gap flux of the motor is generated by both the PM excitation and the specially controlled stator currents (two particular phases) under the same PM pole. The motor configuration and principle of operation are so unusual that the magnetic field distribution and steady-state performance are analyzed by the finite-element method (FEM). Experimental results for a prototype verify that the proposed motor drive is promising for modern electric vehicle applications.published_or_final_versio

    Modular switched reluctance machines to be used in automotive applications

    Get PDF
    In the last decades industry, including also that of electrical machines and drives, was pushed near to its limits by the high market demands and fierce competition. As a response to the demanding challenges, improvements were made both in the design and manufacturing of electrical machines and drives. One of the introduced advanced technological solutions was the modular construction. This approach enables on a hand easier and higher productivity manufacturing, and on the other hand fast repairing in exploitation. Switched reluctance machines (SRMs) are very well fitted for modular construction, since the magnetic insulation of the phases is a basic design requirement. The paper is a survey of the main achievements in the field of modular electrical machines, (especially SRMs), setting the focus on the machines designed to be used in automotive applications

    Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles

    Get PDF
    With ever-increasing concerns on our environment, there is a fast growing interest in electric vehicles (EVs) and hybrid EVs (HEVs) from automakers, governments, and customers. As electric drives are the core of both EVs and HEVs, it is a pressing need for researchers to develop advanced electric-drive systems. In this paper, an overview of permanent-magnet (PM) brushless (BL) drives for EVs and HEVs is presented, with emphasis on machine topologies, drive operations, and control strategies. Then, three major research directions of the PM BL drive systems are elaborated, namely, the magnetic-geared outer-rotor PM BL drive system, the PM BL integrated starter-generator system, and the PM BL electric variable-transmission system. © 2008 IEEE.published_or_final_versio

    In-wheel Motors: Express Comparative Method for PMBL Motors

    Get PDF
    One of the challenges facing the electric vehicle industry today is the selection and design of a suitable in-wheel motor. Permanent Magnet Brushless (PMBL) motor is a good choice for the in-wheel motor because of its lossless excitation, improved efficiency, reduced weight and low maintenance. The PMBL motors can be further classified as Axial-Flux Twin-Rotor (AFTR) and Radial-Flux Twin-Rotor (RFTR) machines. The objective of this dissertation is to develop a fast method for the selection of appropriate in-wheel motor depending on wheel size. To achieve this, torque equations are developed for a conventional single-rotor cylindrical, twin-rotor axial-flux and twin-rotor radial-flux PMBL motors with slot-less stators based on magnetic circuit theory and the torque ratio for any two motors is expressed as a function of motor diameter and axial length. The theoretical results are verified, on the basis of magnetic field theory, by building the 3-dimensional Finite Element Method (FEM) models of the three types of motors and analyzing them in magnetostatic solver to obtain the average torque of each motor. Later, validation of software is carried out by a prototype single-rotor cylindrical slotted motor which was built for direct driven electric wheelchair application. Further, the block diagram of this in-wheel motor including the supply circuit is built in Simulink to observe the motor dynamics in practical scenario. The results from finite element analysis obtained for all the three PMBL motors indicate a good agreement with the analytical approach. For twin-rotor PMBL motors of diameter 334mm, length 82.5mm with a magnetic loading of 0.7T and current loading of 41.5A-turns/mm, the error between the express comparison method and simulation results, in computation of torque ratio, is about 1.5%. With respect to the single-rotor cylindrical motor with slotless stator, the express method for AFTR PMBL motor yielded an error of 4.9% and that of an RFTR PMBL motor resulted in an error of -7.6%. Moreover, experimental validation of the wheelchair motor gave almost the same torque and similar dynamic performance as the FEM and Simulink models respectively

    Simulation of a linear permanent magnet vernier machine for direct-drive wave power generation

    Get PDF
    This paper proposes a linear permanent magnet (PM) vernier machine for direct-drive wave power generation. Firstly, the machine structure is proposed and its parameters are indentified by finite element analysis (FEA). Secondly, the mathematical modeling of wave power absorption system was established. The control strategy for maximizing absorbed wave power is discussed. Then, by using Matlab/Simulink, the wave power generator system is modeled and simulated. A vector control scheme is implemented which controls power flow between the generator and the load via a bi-directional AC/DC converter. The simulation results verify the feasibility of the proposed machine used for direct-drive wave power generation. © 2011 IEEE.published_or_final_versionThe 2011 International Conference on Electrical Machines and Systems (ICEMS 2011), Beijing, China, 20-23 August 2011. In Proceedings of ICEMS, 2011, p. 1-

    A dual-memory permanent magnet brushless machine for automotive integrated starter-generator application

    Get PDF
    This paper presents a dual-memory permanent magnet brushless machine for automotive integrated starter-generator (ISG) application. The key is that the proposed machine adopts two kinds of PM materials, namely NdFeB and AlNiCo for hybrid excitations. Due to the non-linear characteristic of demagnetization curve, AlNiCo can be regulated to operate at different magnetization levels via a magnetizing winding. With this distinct merit, AlNiCo can provide the assistance for online tuning the air-gap flux density. Firstly, the configuration of proposed machine is presented. Secondly, the finite element method (FEM) is applied for the field calculation and performance verification. Finally, both simulation and experimental results confirm that the proposed machine is very suitable for the ISG application. © 2012 IEEE.published_or_final_versio

    State of the Art of Magnetic Gears, their Design, and Characteristics with Respect to EV Application

    Get PDF
    This chapter briefly explains the advantage of using magnetic gears (MGs) for transportation applications. Usually, a traction EV unit consists of, besides the engine or motor, a mechanical gear. The drawbacks of using mechanical gears have been emphasized, especially with respect to high-speed motorization, where high transmission ratio can be reached only by connecting multiple gears in series. A magnetic gear is capable of overcoming these issues. The chapter presents a state of the art on the available MGs, with fixed or variable transmission ratio, pointing out their applicability. Next, the possible design approaches (harmonic, magnetic reluctance equivalent circuit, and vector potential) are introduced. Furthermore, the output performances (power and torque) of two types of studied MGs are evaluated, with emphasis on the main loss criteria: iron losses in all the active parts of the MG. Finally, the influence of several materials is observed by means of numerical computation in order to decide, based on specific configuration, the most suited variant for transportation and aeronautic applications

    In-wheel motor vibration control for distributed-driven electric vehicles:A review

    Get PDF
    Efficient, safe, and comfortable electric vehicles (EVs) are essential for the creation of a sustainable transport system. Distributed-driven EVs, which often use in-wheel motors (IWMs), have many benefits with respect to size (compactness), controllability, and efficiency. However, the vibration of IWMs is a particularly important factor for both passengers and drivers, and it is therefore crucial for a successful commercialization of distributed-driven EVs. This paper provides a comprehensive literature review and state-of-the-art vibration-source-analysis and -mitigation methods in IWMs. First, selection criteria are given for IWMs, and a multidimensional comparison for several motor types is provided. The IWM vibration sources are then divided into internally-, and externally-induced vibration sources and discussed in detail. Next, vibration reduction methods, which include motor-structure optimization, motor controller, and additional control-components, are reviewed. Emerging research trends and an outlook for future improvement aims are summarized at the end of the paper. This paper can provide useful information for researchers, who are interested in the application and vibration mitigation of IWMs or similar topics

    3-D Numerical Hybrid Method for PM Eddy-Current Losses Calculation: Application to Axial-Flux PMSMs

    No full text
    International audienceThis paper describes a 3-D numerical hybrid method (NHM) of the permanent-magnet (PM) eddy-current losses in axial-flux PM synchronous machines (PMSMs). The PM magnetic flux density is determined using the multi-static 3-D finite-element method (FEM) at resistance-limited (i.e., without eddy-current reaction field). Based on the predicted flux density distribution, the eddy-currents induced in the PMs and the 3-D PM eddy-current losses are calculated by 3-D finite-difference method (FDM) considering a large mesh. Therefore, this 3-D NHM is based on a coupling between the multi-static 3-D FEM and the 3-D FDM. Two 24-slots/16-poles (i.e., fractional-slot number) axial-flux PMSMs having a non-overlapping winding (all teeth wound type) with stator double-sided structure are studied: 1) surface-PM (SPM) and 2) interior-PM (IPM) To evaluate the reliability of the proposed technique, the 3-D PM eddy-current losses are determined and compared with transient 3-D FEM (i.e., magneto-dynamical 3-D FEM). The same nonlinear properties of the laminations have been applied for multi-static/transient 3-D FEM. The computation time can be divided by 25 with a difference less than 12%

    A six-phase transverse-flux-reversal linear machine for low-speed reciprocating power generation

    Get PDF
    In this paper, a 6-phase permanent-magnet flux-reversal linear machine for low-speed reciprocating power generation is presented. By increasing the phase number, the phase current is reduced for the same rated power which results in a lower ohmic loss. In addition, the thrust force ripple can be reduced accordingly. By borrowing the transverse-flux concept, the electric loading and the magnetic loading is decoupled and the thrust density can be improved accordingly. The stator of the proposed machine adopts the modular design, and each phase is magnetically decoupled with each other which gives more flexibility and controllability of the generator. Based on the same topology, the proposed machine can be extended to a machine with an arbitrary number of phase to suit different applications.published_or_final_versio
    • …
    corecore