52 research outputs found

    A systematic literature review on the relationship between autonomous vehicle technology and traffic-related mortality.

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ–‰์ •๋Œ€ํ•™์› ๊ธ€๋กœ๋ฒŒํ–‰์ •์ „๊ณต, 2023. 2. ์ตœํƒœํ˜„.The society is anticipated to gain a lot from Autonomous Vehicles (AV), such as improved traffic flow and a decrease in accidents. They heavily rely on improvements in various Artificial Intelligence (AI) processes and strategies. Though some researchers in this field believe AV is the key to enhancing safety, others believe AV creates new challenges when it comes to ensuring the security of these new technology/systems and applications. The article conducts a systematic literature review on the relationship between autonomous vehicle technology and traffic-related mortality. According to inclusion and exclusion criteria, articles from EBSCO, ProQuest, IEEE Explorer, Web of Science were chosen, and they were then sorted. The findings reveal that the most of these publications have been published in advanced transport-related journals. Future improvements in the automobile industry and the development of intelligent transportation systems could help reduce the number of fatal traffic accidents. Technologies for autonomous cars provide effective ways to enhance the driving experience and reduce the number of traffic accidents. A multitude of driving-related problems, such as crashes, traffic, energy usage, and environmental pollution, will be helped by autonomous driving technology. More research is needed for the significant majority of the studies that were assessed. They need to be expanded so that they can be tested in real-world or computer-simulated scenarios, in better and more realistic scenarios, with better and more data, and in experimental designs where the results of the proposed strategy are compared to those of industry standards and competing strategies. Therefore, additional study with improved methods is needed. Another major area that requires additional research is the moral and ethical choices made by AVs. Government, policy makers, manufacturers, and designers all need to do many actions in order to deploy autonomous vehicles on the road effectively. The government should develop laws, rules, and an action plan in particular. It is important to create more effective programs that might encourage the adoption of emerging technology in transportation systems, such as driverless vehicles. In this regard, user perception becomes essential since it may inform designers about current issues and observations made by people. The perceptions of autonomous car users in developing countries like Azerbaijan haven't been thoroughly studied up to this point. The manufacturer has to fix the system flaw and needs a good data set for efficient operation. In the not-too-distant future, the widespread use of highly automated vehicles (AVs) may open up intriguing new possibilities for resolving persistent issues in current safety-related research. Further research is required to better understand and quantify the significant policy implications of Avs, taking into consideration factors like penetration rate, public adoption, technological advancements, traffic patterns, and business models. It only needs to take into account peer-reviewed, full-text journal papers for the investigation, but it's clear that a larger database and more documents would provide more results and a more thorough analysis.์ž์œจ์ฃผํ–‰์ฐจ(AV)๋ฅผ ํ†ตํ•ด ๊ตํ†ต ํ๋ฆ„์ด ๊ฐœ์„ ๋˜๊ณ  ์‚ฌ๊ณ ๊ฐ€ ์ค„์–ด๋“œ๋Š” ๋“ฑ ์‚ฌํšŒ๊ฐ€ ์–ป๋Š” ๊ฒƒ์ด ๋งŽ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ๊ทธ๋“ค์€ ๋‹ค์–‘ํ•œ ์ธ๊ณต์ง€๋Šฅ(AI) ํ”„๋กœ์„ธ์Šค์™€ ์ „๋žต์˜ ๊ฐœ์„ ์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ์ด ๋ถ„์•ผ์˜ ์ผ๋ถ€ ์—ฐ๊ตฌ์ž๋“ค์€ AV๊ฐ€ ์•ˆ์ „์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์—ด์‡ ๋ผ๊ณ  ๋ฏฟ์ง€๋งŒ, ๋‹ค๋ฅธ ์—ฐ๊ตฌ์ž๋“ค์€ AV๊ฐ€ ์ด๋Ÿฌํ•œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ /์‹œ์Šคํ…œ ๋ฐ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ๋ณด์•ˆ์„ ๋ณด์žฅํ•˜๋Š” ๊ฒƒ๊ณผ ๊ด€๋ จํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค๊ณ  ๋ฏฟ๋Š”๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์ž์œจ์ฃผํ–‰์ฐจ ๊ธฐ์ˆ ๊ณผ ๊ตํ†ต ๊ด€๋ จ ์‚ฌ๋ง๋ฅ  ์‚ฌ์ด์˜ ๊ด€๊ณ„์— ๋Œ€ํ•œ ์ฒด๊ณ„์ ์ธ ๋ฌธํ—Œ ๊ฒ€ํ† ๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ํฌํ•จ ๋ฐ ์ œ์™ธ ๊ธฐ์ค€์— ๋”ฐ๋ผ EBSCO, ProQuest, IEEE Explorer ๋ฐ Web of Science์˜ ๊ธฐ์‚ฌ๋ฅผ ์„ ํƒํ•˜๊ณ  ๋ถ„๋ฅ˜ํ–ˆ๋‹ค.์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์ด๋Ÿฌํ•œ ์ถœํŒ๋ฌผ์˜ ๋Œ€๋ถ€๋ถ„์ด ๊ณ ๊ธ‰ ์šด์†ก ๊ด€๋ จ ์ €๋„์— ๊ฒŒ์žฌ๋˜์—ˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋ฏธ๋ž˜์˜ ์ž๋™์ฐจ ์‚ฐ์—…์˜ ๊ฐœ์„ ๊ณผ ์ง€๋Šฅํ˜• ๊ตํ†ต ์‹œ์Šคํ…œ์˜ ๊ฐœ๋ฐœ์€ ์น˜๋ช…์ ์ธ ๊ตํ†ต ์‚ฌ๊ณ ์˜ ์ˆ˜๋ฅผ ์ค„์ด๋Š” ๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ์ž์œจ์ฃผํ–‰ ์ž๋™์ฐจ ๊ธฐ์ˆ ์€ ์šด์ „ ๊ฒฝํ—˜์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ๊ตํ†ต ์‚ฌ๊ณ ์˜ ์ˆ˜๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•œ๋‹ค. ์ถฉ๋Œ, ๊ตํ†ต, ์—๋„ˆ์ง€ ์‚ฌ์šฉ, ํ™˜๊ฒฝ ์˜ค์—ผ๊ณผ ๊ฐ™์€ ์ˆ˜๋งŽ์€ ์šด์ „ ๊ด€๋ จ ๋ฌธ์ œ๋“ค์€ ์ž์œจ ์ฃผํ–‰ ๊ธฐ์ˆ ์— ์˜ํ•ด ๋„์›€์„ ๋ฐ›์„ ๊ฒƒ์ด๋‹ค. ํ‰๊ฐ€๋œ ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ์— ๋Œ€ํ•ด ๋” ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์‹ค์ œ ๋˜๋Š” ์ปดํ“จํ„ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์‹œ๋‚˜๋ฆฌ์˜ค, ๋” ์ข‹๊ณ  ํ˜„์‹ค์ ์ธ ์‹œ๋‚˜๋ฆฌ์˜ค, ๋” ์ข‹๊ณ  ๋” ๋งŽ์€ ๋ฐ์ดํ„ฐ, ๊ทธ๋ฆฌ๊ณ  ์ œ์•ˆ๋œ ์ „๋žต ๊ฒฐ๊ณผ๊ฐ€ ์‚ฐ์—… ํ‘œ์ค€ ๋ฐ ๊ฒฝ์Ÿ ์ „๋žต์˜ ๊ฒฐ๊ณผ์™€ ๋น„๊ต๋˜๋Š” ์‹คํ—˜ ์„ค๊ณ„์—์„œ ํ…Œ์ŠคํŠธ๋  ์ˆ˜ ์žˆ๋„๋ก ํ™•์žฅ๋˜์–ด์•ผ ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐœ์„ ๋œ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•œ ๋˜ ๋‹ค๋ฅธ ์ฃผ์š” ๋ถ„์•ผ๋Š” AV์˜ ๋„๋•์ , ์œค๋ฆฌ์  ์„ ํƒ์ด๋‹ค. ์ •๋ถ€, ์ •์ฑ… ์ž…์•ˆ์ž, ์ œ์กฐ์—…์ฒด ๋ฐ ์„ค๊ณ„์ž๋Š” ๋ชจ๋‘ ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์„ ํšจ๊ณผ์ ์œผ๋กœ ๋„๋กœ์— ๋ฐฐ์น˜ํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ์กฐ์น˜๋ฅผ ์ทจํ•ด์•ผ ํ•œ๋‹ค. ์ •๋ถ€๋Š” ํŠนํžˆ ๋ฒ•, ๊ทœ์น™, ์‹คํ–‰ ๊ณ„ํš์„ ๊ฐœ๋ฐœํ•ด์•ผ ํ•œ๋‹ค. ์šด์ „์ž ์—†๋Š” ์ฐจ๋Ÿ‰๊ณผ ๊ฐ™์€ ์šด์†ก ์‹œ์Šคํ…œ์—์„œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์˜ ์ฑ„ํƒ์„ ์žฅ๋ คํ•  ์ˆ˜ ์žˆ๋Š” ๋ณด๋‹ค ํšจ๊ณผ์ ์ธ ํ”„๋กœ๊ทธ๋žจ์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ์ด์™€ ๊ด€๋ จํ•˜์—ฌ, ์„ค๊ณ„์ž์—๊ฒŒ ํ˜„์žฌ ์ด์Šˆ์™€ ์‚ฌ๋žŒ์— ์˜ํ•œ ๊ด€์ฐฐ์„ ์•Œ๋ ค์ค„ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์‚ฌ์šฉ์ž ์ธ์‹์ด ํ•„์ˆ˜์ ์ด ๋œ๋‹ค.์ œ์กฐ์—…์ฒด๋Š” ์‹œ์Šคํ…œ ๊ฒฐํ•จ์„ ์ˆ˜์ •ํ•ด์•ผ ํ•˜๋ฉฐ ํšจ์œจ์ ์ธ ์ž‘๋™์„ ์œ„ํ•ด ์ข‹์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ฉ€์ง€ ์•Š์€ ๋ฏธ๋ž˜์—, ๊ณ ๋„๋กœ ์ž๋™ํ™”๋œ ์ฐจ๋Ÿ‰(AV)์˜ ๊ด‘๋ฒ”์œ„ํ•œ ์‚ฌ์šฉ์€ ํ˜„์žฌ์˜ ์•ˆ์ „ ๊ด€๋ จ ์—ฐ๊ตฌ์—์„œ ์ง€์†์ ์ธ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ํฅ๋ฏธ๋กœ์šด ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์„ ์—ด์–ด์ค„ ์ˆ˜ ์žˆ๋‹ค. ๋ณด๊ธ‰๋ฅ , ๊ณต๊ณต ์ฑ„ํƒ, ๊ธฐ์ˆ  ๋ฐœ์ „, ๊ตํ†ต ํŒจํ„ด ๋ฐ ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ๊ณผ ๊ฐ™์€ ์š”์†Œ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ Avs์˜ ์ค‘์š”ํ•œ ์ •์ฑ… ์˜ํ–ฅ์„ ๋” ์ž˜ ์ดํ•ดํ•˜๊ณ  ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์กฐ์‚ฌ๋ฅผ ์œ„ํ•ด ๋™๋ฃŒ ๊ฒ€ํ† ๋ฅผ ๊ฑฐ์นœ ์ „๋ฌธ ์ €๋„ ๋…ผ๋ฌธ๋งŒ ๊ณ ๋ คํ•˜๋ฉด ๋˜์ง€๋งŒ, ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๊ฐ€ ์ปค์ง€๊ณ  ๋ฌธ์„œ๊ฐ€ ๋งŽ์•„์ง€๋ฉด ๋” ๋งŽ์€ ๊ฒฐ๊ณผ์™€ ๋” ์ฒ ์ €ํ•œ ๋ถ„์„์ด ์ œ๊ณต๋  ๊ฒƒ์ด ๋ถ„๋ช…ํ•˜๋‹ค.Abstract 3 Table of Contents 6 List of Tables 7 List of Figures 7 List of Appendix 7 CHAPTER 1: INTRODUCTION 8 1.1. Background 8 1.2. Purpose of Research 13 CHAPTER 2: AUTONOMOUS VEHICLES 21 2.1. Intelligent Traffic Systems 21 2.2. System Architecture for Autonomous Vehicles 22 2.3. Key components in AV classification 27 CHAPTER 3: METHODOLOGY AND DATA COLLECTION PROCEDURE 35 CHAPTER 4: FINDINGS AND DISCUSSION 39 4.1. RQ1: Do autonomous vehicles reduce traffic-related deaths 40 4.2. RQ2: Are there any challenges to using autonomous vehicles 63 4.3. RQ3: As a developing country, how effective is the use of autonomous vehicles for reducing traffic mortality 72 CHAPTER 5: CONCLUSION 76 5.1. Summary 76 5.2. Implications and Recommendations 80 5.3. Limitation of the study 91 Bibliography 93 List of Tables Table 1: The 6 Levels of Autonomous Vehicles Table 2: Search strings Table 3: Inclusion and exclusion criteria List of Figures Figure 1: Traffic Death Comparison with Europe Figure 2: Research strategy and study selection process List of Appendix Appendix 1: List of selected articles์„

    Automatic Dense 3D Scene Mapping from Non-overlapping Passive Visual Sensors for Future Autonomous Systems

    Get PDF
    The ever increasing demand for higher levels of autonomy for robots and vehicles means there is an ever greater need for such systems to be aware of their surroundings. Whilst solutions already exist for creating 3D scene maps, many are based on active scanning devices such as laser scanners and depth cameras that are either expensive, unwieldy, or do not function well under certain environmental conditions. As a result passive cameras are a favoured sensor due their low cost, small size, and ability to work in a range of lighting conditions. In this work we address some of the remaining research challenges within the problem of 3D mapping around a moving platform. We utilise prior work in dense stereo imaging, Stereo Visual Odometry (SVO) and extend Structure from Motion (SfM) to create a pipeline optimised for on vehicle sensing. Using forward facing stereo cameras, we use state of the art SVO and dense stereo techniques to map the scene in front of the vehicle. With significant amounts of prior research in dense stereo, we addressed the issue of selecting an appropriate method by creating a novel evaluation technique. Visual 3D mapping of dynamic scenes from a moving platform result in duplicated scene objects. We extend the prior work on mapping by introducing a generalized dynamic object removal process. Unlike other approaches that rely on computationally expensive segmentation or detection, our method utilises existing data from the mapping stage and the findings from our dense stereo evaluation. We introduce a new SfM approach that exploits our platform motion to create a novel dense mapping process that exceeds the 3D data generation rate of state of the art alternatives. Finally, we combine dense stereo, SVO, and our SfM approach to automatically align point clouds from non-overlapping views to create a rotational and scale consistent global 3D model

    Vehicular Instrumentation and Data Processing for the Study of Driver Intent

    Get PDF
    The primary goal of this thesis is to provide processed experimental data needed to determine whether driver intentionality and driving-related actions can be predicted from quantitative and qualitative analysis of driver behaviour. Towards this end, an instrumented experimental vehicle capable of recording several synchronized streams of data from the surroundings of the vehicle, the driver gaze with head pose and the vehicle state in a naturalistic driving environment was designed and developed. Several driving data sequences in both urban and rural environments were recorded with the instrumented vehicle. These sequences were automatically annotated for relevant artifacts such as lanes, vehicles and safely driveable areas within road lanes. A framework and associated algorithms required for cross-calibrating the gaze tracking system with the world coordinate system mounted on the outdoor stereo system was also designed and implemented, allowing the mapping of the driver gaze with the surrounding environment. This instrumentation is currently being used for the study of driver intent, geared towards the development of driver maneuver prediction models

    ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์˜ ์ฐจ๋Ÿ‰ ์•ˆ์ „์„ ์œ„ํ•œ ์ ์‘ํ˜• ๊ด€์‹ฌ ์˜์—ญ ๊ธฐ๋ฐ˜ ํšจ์œจ์  ํ™˜๊ฒฝ ์ธ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ์ด๊ฒฝ์ˆ˜.์ „ ์„ธ๊ณ„์ ์œผ๋กœ ์ž๋™์ฐจ ์‚ฌ๊ณ ๋กœ 120 ๋งŒ ๋ช…์ด ์‚ฌ๋งํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ตํ†ต ์‚ฌ๊ณ ์— ๋Œ€ํ•œ ๊ธฐ๋ณธ์ ์ธ ์˜ˆ๋ฐฉ ์กฐ์น˜์— ๋Œ€ํ•œ ๋…ผ์˜๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ํ†ต๊ณ„ ์ž๋ฃŒ์— ๋”ฐ๋ฅด๋ฉด ๊ตํ†ต ์‚ฌ๊ณ ์˜ 94 %๊ฐ€ ์ธ์  ์˜ค๋ฅ˜์— ๊ธฐ์ธํ•œ๋‹ค. ๋„๋กœ ์•ˆ์ „ ํ™•๋ณด์˜ ๊ด€์ ์—์„œ ์ž์œจ ์ฃผํ–‰ ๊ธฐ์ˆ ์€ ์ด๋Ÿฌํ•œ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ์จ ๊ด€์‹ฌ์ด ๋†’์•„์กŒ์œผ๋ฉฐ, ์—ฐ๊ตฌ ๊ฐœ๋ฐœ์„ ํ†ตํ•ด ๋‹จ๊ณ„์  ์ƒ์šฉํ™”๊ฐ€ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ฃผ์š” ์ž๋™์ฐจ ์ œ์กฐ์—…์ฒด๋Š” ์ด๋ฏธ ์ฐจ์„  ์œ ์ง€ ๋ณด์กฐ์žฅ์น˜ (LKAS: Lane Keeping Assistant System), ์ ์‘ํ˜• ์ˆœํ•ญ ์ œ์–ด ์‹œ์Šคํ…œ(ACC: Adaptive Cruise Control), ์ฃผ์ฐจ ๋ณด์กฐ ์‹œ์Šคํ…œ (PAS: Parking Assistance System), ์ž๋™ ๊ธด๊ธ‰ ์ œ๋™์žฅ์น˜ (AEB: Automated Emergency Braking) ๋“ฑ์˜ ์ฒจ๋‹จ ์šด์ „์ž ๋ณด์กฐ ์‹œ์Šคํ…œ (ADAS)์„ ๊ฐœ๋ฐœํ•˜๊ณ  ์ƒ์šฉํ™”ํ•˜์˜€๋‹ค. ๋˜ํ•œ Audi์˜ Audi AI Traffic Jam Pilot, Tesla์˜ Autopilot, Mercedes-Benz์˜ Distronic Plus, ํ˜„๋Œ€์ž๋™์ฐจ์˜ Highway Driving Assist ๋ฐ BMW์˜ Driving Assistant Plus ์™€ ๊ฐ™์€ ๋ถ€๋ถ„ ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์ด ์ถœ์‹œ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ถ€๋ถ„ ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์€ ์—ฌ์ „ํžˆ ์šด์ „์ž์˜ ์ฃผ์˜๊ฐ€ ์ˆ˜๋ฐ˜๋˜์–ด์•ผ ํ•จ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์•ˆ์ „์„ฑ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ํšจ๊ณผ์ ์ด๊ธฐ ๋•Œ๋ฌธ์— ์ง€์†์ ์œผ๋กœ ๊ทธ ์ˆ˜์š”๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ ๋ช‡ ๋…„๊ฐ„ ๋งŽ์€ ์ˆ˜์˜ ์ž์œจ์ฃผํ–‰ ์‚ฌ๊ณ ๊ฐ€ ๋ฐœ์ƒํ•˜์˜€์œผ๋ฉฐ, ๊ทธ ๋นˆ๋„์ˆ˜๊ฐ€ ๋น ๋ฅด๊ฒŒ ์ฆ๊ฐ€ํ•˜์—ฌ ์‚ฌํšŒ์ ์œผ๋กœ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ฐจ๋Ÿ‰ ์‚ฌ๊ณ ๋Š” ์ธ๋ช… ์‚ฌ๊ณ ์™€ ์ง์ ‘์ ์œผ๋กœ ์—ฐ๊ด€๋˜๊ธฐ ๋•Œ๋ฌธ์— ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์‚ฌ๊ณ ๋“ค์€ ์ž์œจ ์ฃผํ–‰ ๊ธฐ์ˆ  ์‹ ๋ขฐ์„ฑ์˜ ์ €ํ•˜๋ฅผ ์•ผ๊ธฐํ•˜์—ฌ ์‚ฌํšŒ์ ์ธ ๋ถˆ์•ˆ๊ฐ์„ ํ‚ค์šด๋‹ค. ์ตœ๊ทผ ์ž์œจ ์ฃผํ–‰ ๊ด€๋ จ ์‚ฌ๊ณ ๋“ค๋กœ ์ธํ•ด, ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์•ˆ์ „์„ฑ์˜ ๋ณด์žฅ์ด ๋”์šฑ ๊ฐ•์กฐ๋˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ๊ฑฐ๋™ ์ œ์–ด๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ ๊ด€์ ์—์„œ ์ฐจ๋Ÿ‰์˜ ์•ˆ์ „์„ฑ์„ ์šฐ์„ ์ ์œผ๋กœ ํ™•๋ณดํ•˜๋Š” ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ ์ž์œจ์ฃผํ–‰ ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์€ ๋‹จ์ˆœํ•˜๊ฒŒ ์šด์ „์„ ๋Œ€์ฒดํ•˜๋Š” ๊ธฐ์ˆ ์ด ์•„๋‹ˆ๋ผ, ์ฒจ๋‹จ๊ธฐ์ˆ ์˜ ์ง‘์•ฝ ์ฒด๋กœ์จ ์‚ฐ์—…์ ์œผ๋กœ ๋งค์šฐ ํฐ ํŒŒ๊ธ‰๋ ฅ์„ ๊ฐ€์ง„๋‹ค๊ณ  ์ „๋ง๋œ๋‹ค. ํ˜„์žฌ ์ž์œจ์ฃผํ–‰ ์‹œ์Šคํ…œ์€ ๊ธฐ์กด ์ž๋™์ฐจ ์‚ฐ์—…์˜ ๊ณ ์ „์ ์ธ ํ‹€์—์„œ ํ™•์žฅ๋˜์–ด, ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์˜ ๊ด€์ ์—์„œ ์ฃผ๋„์ ์œผ๋กœ ๊ฐœ๋ฐœ์ด ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ์ž์œจ ์ฃผํ–‰์€ ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ ์˜ ๋ณตํ•ฉ์ ์ธ ๊ฒฐํ•ฉ์œผ๋กœ ๊ตฌ์„ฑ๋˜๊ธฐ ๋•Œ๋ฌธ์—, ํ˜„์žฌ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ ๊ฐœ๋ฐœ์ด ์ง„ํ–‰ ์ค‘์ด๋ฉฐ, ์•„์ง ํ‘œ์ค€ํ™”๋˜์–ด ์žˆ์ง€ ์•Š์€ ์‹ค์ •์ด๋‹ค. ๋Œ€๋ถ€๋ถ„ ๊ฐ ๋ชจ๋“ˆ ๋‹จ์œ„์˜ ์ง€์—ฝ์ ์ธ ์„ฑ๋Šฅํ–ฅ์ƒ์„ ์ถ”๊ตฌํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์œผ๋ฉฐ, ๊ตฌ์„ฑ ๋ชจ๋“ˆ ๊ฐ„ ๊ด€๊ณ„๊ฐ€ ๊ณ ๋ ค๋œ ์ „์ฒด ์‹œ์Šคํ…œ ๋‹จ์œ„์˜ ์ ‘๊ทผ๋ฐฉ์‹์€ ๋ฏธํกํ•œ ์‹ค์ •์ด๋‹ค. ์„ธ๋ถ€ ๋ชจ๋“ˆ ๋‹จ์œ„์˜ ์ง€์—ฝ์ ์ธ ์—ฐ๊ตฌ ๊ฐœ๋ฐœ์€ ํ†ตํ•ฉ ์‹œ, ๋ชจ๋“ˆ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ธํ•œ ์˜ํ–ฅ์œผ๋กœ ์‹œ์Šคํ…œ ๊ด€์ ์—์„œ ์ ์ ˆํ•œ ์„ฑ๋Šฅ์„ ํ™•๋ณดํ•˜๊ธฐ ์–ด๋ ค์šธ ์ˆ˜ ์žˆ๋‹ค. ๊ฐ ๋ชจ๋“ˆ์˜ ์„ฑ๋Šฅ๋งŒ์„ ๊ณ ๋ คํ•œ ์ผ๋ฐฉ์ ์ธ ๋ฐฉํ–ฅ์˜ ์—ฐ๊ตฌ๋Š” ํ•œ๊ณ„๊ฐ€ ๋ช…ํ™•ํ•˜๋ฉฐ, ์—ฐ๊ด€๋œ ๋ชจ๋“ˆ๋“ค์˜ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๋ฐ˜์˜ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ž์œจ์ฃผํ–‰ ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๊ด€์ ์—์„œ, ์ฐจ๋Ÿ‰ ์•ˆ์ „์„ ์šฐ์„ ์ ์œผ๋กœ ํ™•๋ณดํ•˜๊ณ  ์ „์ฒด ์„ฑ๋Šฅ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ํšจ๊ณผ์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์ ์ด๊ณ  ๋†’์€ ์„ฑ๋Šฅ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์ „์ฒด ์‹œ์Šคํ…œ ์ž‘๋™ ์ธก๋ฉด์—์„œ ๊ตฌ์„ฑ๋œ ๋ชจ๋“ˆ ๊ฐ„์˜ ์ƒํ˜ธ ์ž‘์šฉ์„ ๊ณ ๋ คํ•˜์—ฌ ํšจ์œจ์ ์ธ ํ™˜๊ฒฝ ์ธ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๋Š”๋ฐ ์ค‘์ ์„ ๋‘”๋‹ค. ์‹ค์งˆ์ ์ธ ๊ด€์ ์—์„œ ํšจ๊ณผ์ ์ธ ์ •๋ณด ์ฒ˜๋ฆฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ  ์ฐจ๋Ÿ‰ ์•ˆ์ „์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์ ์‘ํ˜• ๊ด€์‹ฌ ์˜์—ญ (ROI) ๊ธฐ๋ฐ˜ ๊ณ„์‚ฐ ๋ถ€ํ•˜ ๊ด€๋ฆฌ ์ „๋žต์„ ์ œ์•ˆํ•œ๋‹ค. ์ฐจ๋Ÿ‰์˜ ๊ฑฐ๋™ ํŠน์„ฑ, ๋„๋กœ ์„ค๊ณ„ ํ‘œ์ค€, ์ถ”์›” ๋ฐ ์ฐจ์„  ๋ณ€๊ฒฝ๊ณผ ๊ฐ™์€ ์ฃผ๋ณ€ ์ฐจ๋Ÿ‰์˜ ์ฃผํ–‰ ํŠน์„ฑ์ด ์ ์‘ํ˜• ROI ์„ค๊ณ„ ๋ฐ ์ฃผํ–‰ ์ƒํ™ฉ์— ๋”ฐ๋ฅธ ์˜์—ญ ํ™•์žฅ์— ๋ฐ˜์˜๋œ๋‹ค. ๋˜ํ•œ, ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์‹ค์งˆ์ ์ธ ์•ˆ์ „์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด ROI ์„ค๊ณ„์—์„œ ์ž์œจ ์ฃผํ–‰ ์ œ์–ด๋ฅผ ์œ„ํ•œ ๊ฑฐ๋™ ๊ณ„ํš ๊ฒฐ๊ณผ๊ฐ€ ๊ณ ๋ ค๋œ๋‹ค. ๋ณด๋‹ค ๋„“์€ ์ฃผ๋ณ€ ์˜์—ญ์— ๋Œ€ํ•œ ํ™˜๊ฒฝ ์ •๋ณด๋ฅผ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ๋ผ์ด๋‹ค ๋ฐ์ดํ„ฐ๋Š” ์„ค๊ณ„๋œ ROI๋ณ„๋กœ ๋ถ„๋ฅ˜๋˜๋ฉฐ, ์˜์—ญ๋ณ„ ์ค‘์š”๋„์— ๋”ฐ๋ผ ์—ฐ์‚ฐ ๊ณผ์ •์ด ๋ถ„๋ฆฌ๋˜์–ด ์ˆ˜ํ–‰๋œ๋‹ค. ๋ชฉํ‘œ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” ๋ชจ๋“ˆ ๋ณ„ ์—ฐ์‚ฐ ์‹œ๊ฐ„์ด ์ธก์ •๋œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์œผ๋กœ ํ†ต๊ณ„์ ์œผ๋กœ ๋ถ„์„๋œ๋‹ค. ์šด์ „์ž์˜ ๋ฐ˜์‘ ์‹œ๊ฐ„, ์‚ฐ์—… ํ‘œ์ค€, ๋Œ€์ƒ ํ•˜๋“œ์›จ์–ด ์‚ฌ์–‘ ๋ฐ ์„ผ์„œ ์„ฑ๋Šฅ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฒฐ์ •๋œ ์‹œ์Šคํ…œ ์„ฑ๋Šฅ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•˜์—ฌ, ์•ˆ์ „์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•œ ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์˜ ์ ์ ˆํ•œ ์ƒ˜ํ”Œ๋ง ์ฃผ๊ธฐ๊ฐ€ ์ •์˜๋œ๋‹ค. ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋‹ค์ค‘ ์„ ํ˜• ํšŒ๊ท€ ๋ถ„์„์€ ์ธ์‹ ๋ชจ๋“ˆ์„ ๊ตฌ์„ฑํ•˜๋Š” ํ•จ์ˆ˜ ๋ณ„ ์‹คํ–‰ ์‹œ๊ฐ„์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด ์ ์šฉ๋˜๋ฉฐ, ์•ˆ์ •์ ์ธ ์‹ค์‹œ๊ฐ„ ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด ์ ์‘ํ˜• ROI๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž์œจ ์ฃผํ–‰ ์•ˆ์ „์— ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์„ ํƒ์ ์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜์—ฌ ์—ฐ์‚ฐ ๋ถ€ํ•˜๊ฐ€ ๊ฐ์ถ•๋œ๋‹ค. ์—ฐ์‚ฐ ๋ถ€ํ•˜ ํ‰๊ฐ€ ๊ด€๋ฆฌ์—์„œ ํ™˜๊ฒฝ ์ธ์ง€ ๋ชจ๋“ˆ๊ณผ ์ „์ฒด ์‹œ์Šคํ…œ์˜ ์—ฐ์‚ฐ ๋ถ€ํ•˜๊ฐ€ ๋Œ€์ƒ ํ™˜๊ฒฝ์—์„œ์˜ ์ ์ ˆ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ , ์—ฐ์‚ฐ ๋ถ€ํ•˜ ๊ด€๋ฆฌ์— ๋ฌธ์ œ๊ฐ€ ์žˆ์„ ๋•Œ ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ๊ฑฐ๋™์„ ์ œํ•œํ•˜์—ฌ ์‹œ์Šคํ…œ ์•ˆ์ •์„ฑ์„ ์œ ์ง€ํ•จ์œผ๋กœ์จ ์ฐจ๋Ÿ‰ ์•ˆ์ „์„ฑ์„ ํ™•๋ณดํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ž์œจ์ฃผํ–‰ ์ธ์ง€ ์ „๋žต ๋ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์€ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹ค์ฐจ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ํ™˜๊ฒฝ ์ธ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” ๋ชจ๋“ˆ ๊ฐ„์˜ ์ƒํ˜ธ ์ž‘์šฉ์„ ๊ณ ๋ คํ•˜์—ฌ ๋„์‹ฌ ๋„๋กœ ํ™˜๊ฒฝ์—์„œ ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์•ˆ์ „์„ฑ๊ณผ ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.Since annually 1.2 million people die from car crashes worldwide, discussions about fundamental preventive measures for traffic accidents are taking place. According to the statistical survey, 94 percent of all traffic accidents are caused by human error. From the perspective of securing road safety, automated driving technology became interesting as a way to solve this serious problem, and its commercialization was considered through a step-by-step application through research and development. Major carmakers already have developed and commercialized advanced driver assistance systems (ADAS), such as lane keeping assistance system (LKAS), adaptive cruise control (ACC), parking assistance system (PAS), automated emergency braking (AEB), and so on. Furthermore, partially automated driving systems are being installed in vehicles and released by carmakers. Audi AI Traffic Jam Pilot (Audi), Autopilot (Tesla), Distronic Plus (Mercedes-Benz), Highway Driving Assist (Hyundai Motor Company), and Driving Assistant Plus (BMW) are typical released examples of the partially automated driving system. These released partially automated driving systems are still must be accompanied by driver attention. Nevertheless, it is proving to be effective in significantly improving safety. In recent years, several automated driving accidents have occurred, and the frequency is rapidly increasing and attracting social attention. Since vehicle accidents are directly related to human casualty, accidents of automated vehicles cause social insecurity by causing a decrease in the reliability of automated driving technology. Due to recent automated driving-related accidents, the safety of the automated vehicle has been emphasized more. Therefore, in this study, we propose an approach to secure vehicle safety in terms of the entire system in consideration of the behavior control of the automated driving vehicle. In addition, the development of automated driving is not merely a replacement technology for driving, but it is expected to have an industrial assembly as integration of high technology. Currently, automated driving systems have been extended from the conventional framework of the existing automotive industry, and are being developed in various fields. Since automated driving is composed of a complex combination of various technologies, development is currently underway in various conditions and has not been standardized yet. Most developments tend to pursue local performance improvement in each module unit, and the overall system unit approaches considering the relationship between component modules is insufficient. Local research and development at the submodule level can be challenging to achieve adequate performance from a system-level due to the effects of module interaction in terms of system integration perspective. The one-way approach that considers only the performance of each module has its limitations. To overcome this problem, it is necessary to consider the characteristics of the modules involved. This dissertation focuses on developing an efficient environment perception algorithm by considering the interaction between configured modules in terms of entire system operation to secure the stable and high performance of an automated driving system. In order to perform effective information processing and secure vehicle safety from a practical perspective, we propose an adaptive ROI based computational load management strategy. The motion characteristics of the subject vehicle, road design standards, and driving tasks of the surrounding vehicles, such as overtaking, and lane change, are reflected in the design of adaptive ROI, and the expansion of the area according to the driving task is considered. Additionally, motion planning results for automated driving are considered in the ROI design in order to guarantee the practical safety of the automated vehicle. In order to secure reasonable and appropriate environment information for the wider areas, lidar sensor data is classified by the designed ROI, and separated processing is conducted according to area importance. Based on the driving data, the calculation time of each module constituting the target system is statistically analyzed. In consideration of the system performance constraint determined by using human reaction time and industry standards, target hardware specification and the performance of sensor, the appropriate sampling time for automated driving system is defined to enhance safety. The data-based multiple linear regression is applied to predict the computation time by each function constituting perception module, and the computational load reduction is applied sequentially by selecting the data essential for automated driving safety based on adaptive ROI to secure the stable real-time execution performance of the system. In computational load assessment, it evaluates whether the computational load of the environmental perception module and entire system are appropriate and restricts the vehicle behavior when there is a problem in the computational load management to ensure vehicle safety by maintaining system stability. The performance of the proposed strategy and algorithms is evaluated through driving data-based simulation and actual vehicle tests. Test results show that the proposed environment recognition algorithm, which considers the interactions between the modules that make up the automated driving system, guarantees the safety of automated vehicle and reliable performance of system in an urban environment scenario.Chapter 1 Introduction 1 1.1. Background and Motivation 1 1.2. Previous Researches 6 1.3. Thesis Objectives 11 1.4. Thesis Outline 13 Chapter 2 Overall Architecture 14 2.1. Automated Driving Architecture 14 2.2. Test Vehicle Configuration 19 Chapter 3 Design of Adaptive ROI and Processing 21 3.1. ROI Definition 25 3.1.1. ROI Design for Normal Driving Condition 30 3.1.2. ROI Design for Lane Change 50 3.1.3. ROI Design for Intersection 56 3.2. Data Processing based on Adaptive ROI 62 3.2.1. Point Cloud Categorization by Adaptive ROI 63 3.2.2. Separated Voxelization 66 3.2.3. Separated Clustering 70 Chapter 4 Environment Perception Algorithm for Automated Driving 75 4.1. Time Delay Compensation of Environment Sensor 77 4.1.1. Algorithm Structure of Time Delay Estimation and Compensation 78 4.1.2. Time Delay Compensation Algorithm 79 4.1.3. Analysis of Processing Delay 84 4.1.4. Test Data based Open-loop Simulation 91 4.2. Environment Representation 96 4.2.1. Static Obstacle Map Construction 98 4.2.2. Lane and Road Boundary Detection 100 4.3. Multiple Object State Estimation and Tracking based on Geometric Model-Free Approach 107 4.3.1. Prediction of Geometric Model-Free Approach 109 4.3.2. Track Management 111 4.3.3. Measurement Update 112 4.3.4. Performance Evaluation via vehicle test 114 Chapter 5 Computational Load Management 117 5.1. Processing Time Analysis of Driving Data 121 5.2. Processing Time Estimation based on Multiple Linear Regression 128 5.2.1. Clustering Processing Time Estimation 129 5.2.2. Multi Object Tracking (MOT) Processing Time Estimation 138 5.2.3. Validation through Data-based Simulation 146 5.3. Computational Load Management 149 5.3.1. Sequential Processing to Computation Load Reduction 151 5.3.2. Restriction of Driving Control 154 5.3.3. Validation through Data-based Simulation 159 Chapter 6 Vehicle Tests based Performance Evaluation 163 6.1. Test-data based Simulation 164 6.2. Vehicle Tests: Urban Automated Driving 171 6.2.1. Test Configuration 171 6.2.2. Motion Planning and Vehicle Control 172 6.2.3. Vehicle Tests Results 174 Chapter 7 Conclusions and Future Works 184 Bibliography 188 Abstract in Korean 200Docto

    Development of a light-based driver assistance system

    Get PDF
    [no abstract

    Machine learning and blockchain technologies for cybersecurity in connected vehicles

    Get PDF
    Future connected and autonomous vehicles (CAVs) must be secured againstcyberattacks for their everyday functions on the road so that safety of passengersand vehicles can be ensured. This article presents a holistic review of cybersecurityattacks on sensors and threats regardingmulti-modal sensor fusion. A compre-hensive review of cyberattacks on intra-vehicle and inter-vehicle communicationsis presented afterward. Besides the analysis of conventional cybersecurity threatsand countermeasures for CAV systems,a detailed review of modern machinelearning, federated learning, and blockchain approach is also conducted to safe-guard CAVs. Machine learning and data mining-aided intrusion detection systemsand other countermeasures dealing with these challenges are elaborated at theend of the related section. In the last section, research challenges and future direc-tions are identified

    On Semantic Segmentation and Path Planning for Autonomous Vehicles within Off-Road Environments

    Get PDF
    There are many challenges involved in creating a fully autonomous vehicle capable of safely navigating through off-road environments. In this work we focus on two of the most prominent such challenges, namely scene understanding and path planning. Scene understanding is a challenging computer vision task with recent advances in convolutional neural networks (CNN) achieving results that notably surpass prior traditional feature driven approaches. Here, we build on recent work in urban road-scene understanding, training a state of the art CNN architecture towards the task of classifying off-road scenes. We analyse the effects of transfer learning and training data set size on CNN performance, evaluating multiple configurations of the network at multiple points during the training cycle, investigating in depth how the training process is affected. We compare this CNN to a more traditional feature-driven approach with Support Vector Machine (SVM) classifier and demonstrate state-of-the-art results in this particularly challenging problem of off-road scene understanding. We then expand on this with the addition of multi-channel RGBD data, which we encode in multiple configurations for CNN input. We evaluate each of these configuration over our own off-road RGBD data set and compare performance to that of the network model trained using RGB data. Next, we investigate end-to-end navigation, whereby a machine learning algorithm optimises to predict the vehicle control inputs of a human driver. After evaluating such a technique in an off-road environment and identifying several limitations, we propose a new approach in which a CNN learns to predict vehicle path visually, combining a novel approach to automatic training data creation with state of the art CNN architecture to map a predicted route directly onto image pixels. We then evaluate this approach using our off-road data set, and demonstrate effectiveness surpassing existing end-to-end methods

    Measurable Safety of Automated Driving Functions in Commercial Motor Vehicles - Technological and Methodical Approaches

    Get PDF
    Fahrerassistenzsysteme sowie automatisiertes Fahren leisten einen wesentlichen Beitrag zur Verbesserung der Verkehrssicherheit von Kraftfahrzeugen, insbesondere von Nutzfahrzeugen. Mit der Weiterentwicklung des automatisierten Fahrens steigt hierbei die funktionale Leistungsfรคhigkeit, woraus Anforderungen an neue, gesamtheitliche Erprobungskonzepte entstehen. Um die Absicherung hรถherer Stufen von automatisierten Fahrfunktionen zu garantieren, sind neuartige Verifikations- und Validierungsmethoden erforderlich. Ziel dieser Arbeit ist es, durch die Aggregation von Testergebnissen aus wissensbasierten und datengetriebenen Testplattformen den รœbergang von einer quantitativen Kilometerzahl zu einer qualitativen Testabdeckung zu ermรถglichen. Die adaptive Testabdeckung zielt somit auf einen Kompromiss zwischen Effizienz- und Effektivitรคtskriterien fรผr die Absicherung von automatisierten Fahrfunktionen in der Produktentstehung von Nutzfahrzeugen ab. Diese Arbeit umfasst die Konzeption und Implementierung eines modularen Frameworks zur kundenorientierten Absicherung automatisierter Fahrfunktionen mit vertretbarem Aufwand. Ausgehend vom Konfliktmanagement fรผr die Anforderungen der Teststrategie werden hochautomatisierte Testansรคtze entwickelt. Dementsprechend wird jeder Testansatz mit seinen jeweiligen Testzielen integriert, um die Basis eines kontextgesteuerten Testkonzepts zu realisieren. Die wesentlichen Beitrรคge dieser Arbeit befassen sich mit vier Schwerpunkten: * Zunรคchst wird ein Co-Simulationsansatz prรคsentiert, mit dem sich die Sensoreingรคnge in einem Hardware-in-the-Loop-Prรผfstand mithilfe synthetischer Fahrszenarien simulieren und/ oder stimulieren lassen. Der vorgestellte Aufbau bietet einen phรคnomenologischen Modellierungsansatz, um einen Kompromiss zwischen der Modellgranularitรคt und dem Rechenaufwand der Echtzeitsimulation zu erreichen. Diese Methode wird fรผr eine modulare Integration von Simulationskomponenten, wie Verkehrssimulation und Fahrdynamik, verwendet, um relevante Phรคnomene in kritischen Fahrszenarien zu modellieren. * Danach wird ein Messtechnik- und Datenanalysekonzept fรผr die weltweite Absicherung von automatisierten Fahrfunktionen vorgestellt, welches eine Skalierbarkeit zur Aufzeichnung von Fahrzeugsensor- und/ oder Umfeldsensordaten von spezifischen Fahrereignissen einerseits und permanenten Daten zur statistischen Absicherung und Softwareentwicklung andererseits erlaubt. Messdaten aus lรคnderspezifischen Feldversuchen werden aufgezeichnet und zentral in einer Cloud-Datenbank gespeichert. * AnschlieรŸend wird ein ontologiebasierter Ansatz zur Integration einer komplementรคren Wissensquelle aus Feldbeobachtungen in ein Wissensmanagementsystem beschrieben. Die Gruppierung von Aufzeichnungen wird mittels einer ereignisbasierten Zeitreihenanalyse mit hierarchischer Clusterbildung und normalisierter Kreuzkorrelation realisiert. Aus dem extrahierten Cluster und seinem Parameterraum lassen sich die Eintrittswahrscheinlichkeit jedes logischen Szenarios und die Wahrscheinlichkeitsverteilungen der zugehรถrigen Parameter ableiten. Durch die Korrelationsanalyse von synthetischen und naturalistischen Fahrszenarien wird die anforderungsbasierte Testabdeckung adaptiv und systematisch durch ausfรผhrbare Szenario-Spezifikationen erweitert. * SchlieรŸlich wird eine prospektive Risikobewertung als invertiertes Konfidenzniveau der messbaren Sicherheit mithilfe von Sensitivitรคts- und Zuverlรคssigkeitsanalysen durchgefรผhrt. Der Versagensbereich kann im Parameterraum identifiziert werden, um die Versagenswahrscheinlichkeit fรผr jedes extrahierte logische Szenario durch verschiedene Stichprobenverfahren, wie beispielsweise die Monte-Carlo-Simulation und Adaptive-Importance-Sampling, vorherzusagen. Dabei fรผhrt die geschรคtzte Wahrscheinlichkeit einer Sicherheitsverletzung fรผr jedes gruppierte logische Szenario zu einer messbaren Sicherheitsvorhersage. Das vorgestellte Framework erlaubt es, die Lรผcke zwischen wissensbasierten und datengetriebenen Testplattformen zu schlieรŸen, um die Wissensbasis fรผr die Abdeckung der Operational Design Domains konsequent zu erweitern. Zusammenfassend zeigen die Ergebnisse den Nutzen und die Herausforderungen des entwickelten Frameworks fรผr messbare Sicherheit durch ein VertrauensmaรŸ der Risikobewertung. Dies ermรถglicht eine kosteneffiziente Erweiterung der Validitรคt der Testdomรคne im gesamten Softwareentwicklungsprozess, um die erforderlichen Testabbruchkriterien zu erreichen

    Measurable Safety of Automated Driving Functions in Commercial Motor Vehicles

    Get PDF
    With the further development of automated driving, the functional performance increases resulting in the need for new and comprehensive testing concepts. This doctoral work aims to enable the transition from quantitative mileage to qualitative test coverage by aggregating the results of both knowledge-based and data-driven test platforms. The validity of the test domain can be extended cost-effectively throughout the software development process to achieve meaningful test termination criteria
    • โ€ฆ
    corecore