486 research outputs found

    Neuro-Controller Design by Using the Multifeedback Layer Neural Network and the Particle Swarm Optimization

    Get PDF
    In the present study, a novel neuro-controller is suggested for hard disk drive (HDD) systems in addition to nonlinear dynamic systems using the Multifeedback-Layer Neural Network (MFLNN) proposed in recent years. In neuro-controller design problems, since the derivative based train methods such as the back-propagation and Levenberg-Marquart (LM) methods necessitate the reference values of the neural network’s output or Jacobian of the dynamic system for the duration of the train, the connection weights of the MFLNN employed in the present work are updated using the Particle Swarm Optimization (PSO) algorithm that does not need such information. The PSO method is improved by some alterations to augment the performance of the standard PSO. First of all, this MFLNN-PSO controller is applied to different nonlinear dynamical systems. Afterwards, the proposed method is applied to a HDD as a real system. Simulation results demonstrate the effectiveness of the proposed controller on the control of dynamic and HDD systems

    Endogenous space in the Net era

    Get PDF
    Libre Software communities are among the most interesting and advanced socio-economic laboratories on the Net. In terms of directions of Regional Science research, this paper addresses a simple question: “Is the socio-economics of digital nets out of scope for Regional Science, or might the latter expand to a cybergeography of digitally enhanced territories ?” As for most simple questions, answers are neither so obvious nor easy. The authors start drafting one in a positive sense, focussing upon a file rouge running across the paper: endogenous spaces woven by socio-economic processes. The drafted answer declines on an Evolutionary Location Theory formulation, together with two computational modelling views. Keywords: Complex networks, Computational modelling, Economics of Internet, Endogenous spaces, Evolutionary location theory, Free or Libre Software, Path dependence, Positionality.

    Sync & Sense Enabled Adaptive Packetization VoIP

    Get PDF
    The quality and reliability problem of VoIP comes from the fact that VoIP relies on the network to transport the voice packets. The inherent problem of VoIP is that there is a mismatch between VoIP and the network. Namely, VoIP has a strict requirement of bandwidth, delay, and loss, but the network (particularly best-effort service networks) cannot guarantee such a requirement. A solution to deal with this problem is to enhance VoIP with an adaptive-rate control, called adaptive-rate VoIP. Adaptive-rate VoIP has the ability to detect the state of the network and adjust the transmission accordingly. Therefore, it gives VoIP the intelligence to optimize its performance, and making it resilient and robust to the service offered by the network. The objective of this dissertation is to develop an adaptive-rate VoIP system. We take a comprehensive approach in the study and development. Adaptive-rate VoIP is generally composed of three components: rate adaptation, network state detection, and adaptive-rate control. In the rate adaptation component, we study optimizing packetization, which can be used as an alternative means for rate adaptation. An advantage is that rate adaptation is independent of the speech coder. With this method, an adaptive-rate VoIP can be based on any constant bitrate speech coder. The study shows that the VoIP performance is primarily affected by three factors: packetization, network load, and significance of VoIP traffic; and, optimizing packetization allows us to ensure the highest possible performance. In the network state detection component, we propose a novel measurement methodology called Sync & Sense of periodic stream. Sync & Sense is unique in that it can virtually synchronize the transmission and reception timing of the VoIP session without requiring a synchronized clock. The simulation result shows that Sync & Sense can accurately measure one-way network delay. Other benefits of Sync & Sense include the ability to estimate the available network bandwidth and the full spectrum of the delays of the VoIP session. In the adaptive-rate control component, we consider the design choices and develop an adaptive-rate control that makes use of the first two components. The integration of the three components is a novel and unique adaptive-rate VoIP called Sync & Sense Enabled Adaptive Packetization VoIP. The simulation result shows that our adaptive VoIP can optimize the performance under any given network condition, and deliver a better performance than traditional VoIP. The simulation result also demonstrates that our adaptive VoIP possesses the desirable properties, which include fast response to network condition, aggressiveness to compete for the needed share of bandwidth, TCP-friendliness, and fair bandwidth allocation

    Router-based algorithms for improving internet quality of service.

    Get PDF
    We begin this thesis by generalizing some results related to a recently proposed positive system model of TCP congestion control algorithms. Then, motivated by a mean ¯eld analysis of the positive system model, a novel, stateless, queue management scheme is designed: Multi-Level Comparisons with index l (MLC(l)). In the limit, MLC(l) enforces max-min fairness in a network of TCP flows. We go further, showing that counting past drops at a congested link provides su±cient information to enforce max-min fairness among long-lived flows and to reduce the flow completion times of short-lived flows. Analytical models are presented, and the accuracy of predictions are validated by packet level ns2 simulations. We then move our attention to e±cient measurement and monitoring techniques. A small active counter architecture is presented that addresses the problem of accurate approximation of statistics counter values at very-high speeds that can be both updated and estimated on a per-packet basis. These algorithms are necessary in the design of router-based flow control algorithms since on-chip Static RAM (SRAM) currently is a scarce resource, and being economical with its usage is an important task. A highly scalable method for heavy-hitter identifcation that uses our small active counters architecture is developed based on heuristic argument. Its performance is compared to several state-of-the-art algorithms and shown to out-perform them. In the last part of the thesis we discuss the delay-utilization tradeoff in the congested Internet links. While several groups of authors have recently analyzed this tradeoff, the lack of realistic assumption in their models and the extreme complexity in estimation of model parameters, reduces their applicability at real Internet links. We propose an adaptive scheme that regulates the available queue space to keep utilization at desired, high, level. As a consequence, in large-number-of-users regimes, sacrifcing 1-2% of bandwidth can result in queueing delays that are an order of magnitude smaller than in the standard BDP-buŸering case. We go further and introduce an optimization framework for describing the problem of interest and propose an online algorithm for solving it

    Router-based algorithms for improving internet quality of service.

    Get PDF
    We begin this thesis by generalizing some results related to a recently proposed positive system model of TCP congestion control algorithms. Then, motivated by a mean ¯eld analysis of the positive system model, a novel, stateless, queue management scheme is designed: Multi-Level Comparisons with index l (MLC(l)). In the limit, MLC(l) enforces max-min fairness in a network of TCP flows. We go further, showing that counting past drops at a congested link provides su±cient information to enforce max-min fairness among long-lived flows and to reduce the flow completion times of short-lived flows. Analytical models are presented, and the accuracy of predictions are validated by packet level ns2 simulations. We then move our attention to e±cient measurement and monitoring techniques. A small active counter architecture is presented that addresses the problem of accurate approximation of statistics counter values at very-high speeds that can be both updated and estimated on a per-packet basis. These algorithms are necessary in the design of router-based flow control algorithms since on-chip Static RAM (SRAM) currently is a scarce resource, and being economical with its usage is an important task. A highly scalable method for heavy-hitter identifcation that uses our small active counters architecture is developed based on heuristic argument. Its performance is compared to several state-of-the-art algorithms and shown to out-perform them. In the last part of the thesis we discuss the delay-utilization tradeoff in the congested Internet links. While several groups of authors have recently analyzed this tradeoff, the lack of realistic assumption in their models and the extreme complexity in estimation of model parameters, reduces their applicability at real Internet links. We propose an adaptive scheme that regulates the available queue space to keep utilization at desired, high, level. As a consequence, in large-number-of-users regimes, sacrifcing 1-2% of bandwidth can result in queueing delays that are an order of magnitude smaller than in the standard BDP-buŸering case. We go further and introduce an optimization framework for describing the problem of interest and propose an online algorithm for solving it

    Assessment of direct and indirect associations between children active school travel and environmental, household and child factors using structural equation modelling.

    Get PDF
    BACKGROUND: Active school travel (AST) is influenced by multiple factors including built and social environments, households and individual variables. A holistic theory such as Mitra's Behavioural Model of School Transportation (BMST) is vital to comprehensively understand these complex interrelationships. This study aimed to assess direct and indirect associations between children's AST and environmental, household and child factors based on the BMST using structural equation modelling (SEM). METHODS: Data were drawn from Neighbourhoods for Active Kids (NfAK), a cross-sectional study of 1102 children aged 8-13 years (school years 5-8) and their parents from nine intermediate and 10 primary schools in Auckland, New Zealand between February 2015 and December 2016. Data were collected using an online participatory mapping survey (softGIS) with children, a computer-assisted telephone interviewing survey (CATI) with parents, and ArcGIS for built environment attributes. Based on the BMST a conceptual model of children's school travel behaviour was specified for SEM analyses ('hypothesised SEM'), and model modification was made to improve the model ('modified SEM'). SEM analyses using Mplus were performed to test the hypothesised/modified SEM and to assess direct and indirect relationships among variables. RESULTS: The overall fit of the modified SEM was acceptable (N = 542; Root mean square error of approximation = 0.04, Comparative fit index = 0.94, Tucker-Lewis index = 0.92). AST was positively associated with child independent mobility, child-perceived neighbourhood safety, and parent-perceived importance of social interaction and neighbourhood social environment. Distance to school, and parental perceptions of convenience and concerns about traffic safety were negatively associated with AST. Parental fears of stranger danger were indirectly related to AST through those of traffic safety. Distance to school and child independent mobility mediated relationships between AST and child school year and sex. CONCLUSIONS: Increasing children's AST requires action on multiple fronts including communities that support independent mobility by providing child friendly social and built environments, safety from traffic, and policies that promote local schools and safe vehicle-free zones around school

    Self-tuning algorithms for the assignment of packet control units and handover parameters in GERAN

    Get PDF
    Esta tesis aborda el problema de la optimización automática de parámetros en redes de acceso radio basadas en GSM-EDGE Radio Access Network (GERAN). Dada la extensión del conjunto de parámetros que se puede optimizar, este trabajo se centra en dos de los procesos encargados de la gestión de la movilidad: el proceso de (re)selección de celda para servicios por conmutación de paquetes y el proceso de traspaso para servicios de voz por conmutación de circuitos
    • 

    corecore