334 research outputs found

    Direct current control for grid connected multilevel inverters

    Get PDF
    Control schemes for inverters of different topologies and various numbers of voltage levels are of great interest for many standard as well as special applications. This thesis describes a novel, robust and high-dynamic direct current control scheme for multilevel voltage source inverters. lt is highly independent from load parameters and universally applicable. The new control method is examined and validated with real measurements . The aim of the thesis is to establish and prove a new concept of a direct current control algorithm for multilevel inverter topologies for grid connected systems. This application is characterized by unknown grid conditions including failure modes and other distortions, complex inverter topologies and a large variety and complexity of current control algorithms for multilevel inverters. Therefore the complexity of the system needs to be reduced. Additionally , the advantages of multilevel inverters and the dynamic performance and robustness of direct current control techniques shall be combined. Starting from a detailed literature study on inverter topologies and direct as well as indirect current control methods, the thesis includes three chapters containing relevant contributions to the achievement of the objectives. A method reducing the control-complexity of multilevel converters has been developed. The simplification method is based on a transformation that converts any three-phase voltage (or current) into a non-orthogonal coordinate system. This choice minimizes the complexity and effort to determine the location of those discrete voltage space vectors directly surrounding the required reference voltage vector. A further improvement is achieved by scaling all coordinates to integer values. This is advantageous for further calculations on microprocessors or FPGA based control systems. The main contribution of this thesis is a new direct current control method minimizing the disadvantages of existing direct methods. At the same time advantages of other control algorithms shall be applied. The new method is based on a simple mathematical equation, that is, the solution of a scalar product, to always select the one inverter output voltage vector best reducing the actual current error. This results in the designation "Scalar Hysteresis Control - SHC". An advanced seeking algorithm ensures robust current control capability even in case of unknown, unsymmetrical or changing loads, in case of rapid set-point changes or in cases of unknown phase voltages . The new method therefore shows excellent properties in terms of simplicity , robustness, dynamics and independence from the inverter level count and the hardware topology . The properties of the control method are verified by means of simulations and real measurements on two-, three- and five-level inverters over the complete voltage operating range. Finally, all contributions are collected together and assessed with regard to the objectives. From the proposed control method new opportunities for future work, further developments and extensions are evolving for continuing scientific researchEls sistemes de control d'inversors de diferents topologies i diferent varis nivells de tensió són de gran interès per moltes aplicacions estàndard i també per aplicacions especials. Aquesta tesi investiga sobre un mètode de control directe de corrent per convertidors multinivell en font de tensió que es mostra robust i presenta una elevada dinàmica en el control de corrent. El mètode és molt robust davant de canvies als paràmetres de la càrrega i aplicable a qualsevol tipus de convertidor. En aquesta tesi s'analitza el mètode i es valida mitjançant resultats experimentals. L'objectiu d'aquesta tesi és establir i demostrar un nou de mètode i algorisme de control directe de corrent aplicat especialment a inversors connectats a la xarxa. L'aplicació es caracteritza per la desconeixença dels paràmetres de la xarxa, incloent diferents modes de falla i distorsions en la seva tensió i una varietat de tipologies de convertidors multinivell. El mètode de control busca simplificar l'algorisme i que pugui ser aplicat en aquest entorn de forma robusta, de forma que es pugui estendre l'ús dels convertidors multinivell sense afegir més complexitat als algorismes de control i modulació. La tesi aborda el problema iniciant amb un anàlisi de la literatura existent en aquest tipus de mètodes de control directe i indirecte del corrent i els convertidors multinivell, per continuar amb l'anàlisi del mètode proposat i la seva demostració mitjançant resultats de simulacions i experimentals. El mètode de simplificació està basat en una transformació que transforma qualsevol sistema trifàsic a un sistema de coordenades no-ortogonal. Escollir aquest sistema de coordenades redueix la complexitat i l'esforç per determinar la ubicació d'aquells vectors espacials que directament envolten el vector de referencia. A més, totes les coordenades s'escalen a valors enters, que permet la programació de l'algorisme en sistemes de control basats en microprocessadors o FPGAs. La principal contribució d'aquesta tesi és un nou mètode de control de corrent que intenta minimitzar els desavantatges dels mètodes indirectes existents a l'actualitat, al mateix moment que s'intenta incorporar els avantatges dels mètodes indirectes. El mètode proposat es basa en una equació matemàtica simple, la solució d'un producte escalar, per trobar el vector de tensió espacial que minimitza l'error de corrent, en el que s'anomena "Scalar Hysteresis Control" o SHC. L'algorisme assegura un control robust del corrent sense la necessitat de conèixer la tensió de fase, o les càrregues, tant si són desequilibrades o canviants. També presenta una dinàmica molt elevada en cas de canvies en la referència. El nou mètode mostra unes propietats excel·lents en termes de simplicitat, robustesa, dinàmica i independència de la tipologia del convertidor i, en el cas de convertidors multinivell, del nombre de nivells. Les propietats del mètode de control són verificades mitjançant simulacions i resultats experimentals en convertidors de dos, tres i fins a cinc nivells de tensió en tot el rang d'operació, fins i tot en la zona de sobremodulació. A partir del mètode de control proposat, s'estan desenvolupant noves aplicacions i extensions, continuant també la contribució a la recerca científica

    Direct current control for grid connected multilevel inverters

    Get PDF
    Control schemes for inverters of different topologies and various numbers of voltage levels are of great interest for many standard as well as special applications. This thesis describes a novel, robust and high-dynamic direct current control scheme for multilevel voltage source inverters. lt is highly independent from load parameters and universally applicable. The new control method is examined and validated with real measurements . The aim of the thesis is to establish and prove a new concept of a direct current control algorithm for multilevel inverter topologies for grid connected systems. This application is characterized by unknown grid conditions including failure modes and other distortions, complex inverter topologies and a large variety and complexity of current control algorithms for multilevel inverters. Therefore the complexity of the system needs to be reduced. Additionally , the advantages of multilevel inverters and the dynamic performance and robustness of direct current control techniques shall be combined. Starting from a detailed literature study on inverter topologies and direct as well as indirect current control methods, the thesis includes three chapters containing relevant contributions to the achievement of the objectives. A method reducing the control-complexity of multilevel converters has been developed. The simplification method is based on a transformation that converts any three-phase voltage (or current) into a non-orthogonal coordinate system. This choice minimizes the complexity and effort to determine the location of those discrete voltage space vectors directly surrounding the required reference voltage vector. A further improvement is achieved by scaling all coordinates to integer values. This is advantageous for further calculations on microprocessors or FPGA based control systems. The main contribution of this thesis is a new direct current control method minimizing the disadvantages of existing direct methods. At the same time advantages of other control algorithms shall be applied. The new method is based on a simple mathematical equation, that is, the solution of a scalar product, to always select the one inverter output voltage vector best reducing the actual current error. This results in the designation "Scalar Hysteresis Control - SHC". An advanced seeking algorithm ensures robust current control capability even in case of unknown, unsymmetrical or changing loads, in case of rapid set-point changes or in cases of unknown phase voltages . The new method therefore shows excellent properties in terms of simplicity , robustness, dynamics and independence from the inverter level count and the hardware topology . The properties of the control method are verified by means of simulations and real measurements on two-, three- and five-level inverters over the complete voltage operating range. Finally, all contributions are collected together and assessed with regard to the objectives. From the proposed control method new opportunities for future work, further developments and extensions are evolving for continuing scientific researchEls sistemes de control d'inversors de diferents topologies i diferent varis nivells de tensió són de gran interès per moltes aplicacions estàndard i també per aplicacions especials. Aquesta tesi investiga sobre un mètode de control directe de corrent per convertidors multinivell en font de tensió que es mostra robust i presenta una elevada dinàmica en el control de corrent. El mètode és molt robust davant de canvies als paràmetres de la càrrega i aplicable a qualsevol tipus de convertidor. En aquesta tesi s'analitza el mètode i es valida mitjançant resultats experimentals. L'objectiu d'aquesta tesi és establir i demostrar un nou de mètode i algorisme de control directe de corrent aplicat especialment a inversors connectats a la xarxa. L'aplicació es caracteritza per la desconeixença dels paràmetres de la xarxa, incloent diferents modes de falla i distorsions en la seva tensió i una varietat de tipologies de convertidors multinivell. El mètode de control busca simplificar l'algorisme i que pugui ser aplicat en aquest entorn de forma robusta, de forma que es pugui estendre l'ús dels convertidors multinivell sense afegir més complexitat als algorismes de control i modulació. La tesi aborda el problema iniciant amb un anàlisi de la literatura existent en aquest tipus de mètodes de control directe i indirecte del corrent i els convertidors multinivell, per continuar amb l'anàlisi del mètode proposat i la seva demostració mitjançant resultats de simulacions i experimentals. El mètode de simplificació està basat en una transformació que transforma qualsevol sistema trifàsic a un sistema de coordenades no-ortogonal. Escollir aquest sistema de coordenades redueix la complexitat i l'esforç per determinar la ubicació d'aquells vectors espacials que directament envolten el vector de referencia. A més, totes les coordenades s'escalen a valors enters, que permet la programació de l'algorisme en sistemes de control basats en microprocessadors o FPGAs. La principal contribució d'aquesta tesi és un nou mètode de control de corrent que intenta minimitzar els desavantatges dels mètodes indirectes existents a l'actualitat, al mateix moment que s'intenta incorporar els avantatges dels mètodes indirectes. El mètode proposat es basa en una equació matemàtica simple, la solució d'un producte escalar, per trobar el vector de tensió espacial que minimitza l'error de corrent, en el que s'anomena "Scalar Hysteresis Control" o SHC. L'algorisme assegura un control robust del corrent sense la necessitat de conèixer la tensió de fase, o les càrregues, tant si són desequilibrades o canviants. També presenta una dinàmica molt elevada en cas de canvies en la referència. El nou mètode mostra unes propietats excel·lents en termes de simplicitat, robustesa, dinàmica i independència de la tipologia del convertidor i, en el cas de convertidors multinivell, del nombre de nivells. Les propietats del mètode de control són verificades mitjançant simulacions i resultats experimentals en convertidors de dos, tres i fins a cinc nivells de tensió en tot el rang d'operació, fins i tot en la zona de sobremodulació. A partir del mètode de control proposat, s'estan desenvolupant noves aplicacions i extensions, continuant també la contribució a la recerca científica.Postprint (published version

    Improved control for multilevel inverters in grid applications

    Get PDF
    Control systems for three-phase grid connected voltage source inverters (VSI) play an important role in energy transformation systems . They are expected to be stable, robust and accurate during steady state as well as different grid faults and disturbances like voltage sags or unbalanced conditions. Caused by increasingly rising grid standards and efficiency requirements the use of multilevel inverter systems in grid connected low voltage applications are getting more and more attention. Nevertheless, the use of these inverter types leads to increased complexity of the control system and the hardware components. This thesis presents an improved control scheme for multilevel inverters in grid applications. The system combines a robust and high-dynamic direct current control scheme called scalar hysteresisEn molts casos i, cada cop més, els sistemes de transformació energètica estan basats en convertidors en font de tensió connectats a la xarxa elèctrica trifàsica. Aquests convertidors necessiten de sistemes de control per controlar els fluxos energètics. Els sistemes de control han de ser estables, però també robustos i precisos durant el seu funcionament normal, però també en condicions on la xarxa pot presentar defectes, com curtcircuits, sots de tensió o desequilibris en la tensió. Degut a l'increment dels requeriments tècnics de connexió i d'eficiència energètica, els convertidors multinivell estan guanyant molt d'interès en aquest tipus d'aplicacions connectades a la xarxa tot i que el seu control i els seus components siguin més complexes. Aquesta tesi presenta un mètode de control per convertidors multinivell connectats a la xarxa elèctrica. El mètode combina la robustesa davant de canvis en el sistema així com una alta capacitat dinàmica per controlar el corrent injectat a la xarxa. El mètode presentat esta basat en l'anomenat Scalar Hysteresis Control (SHC) i incorpora un sistema feedforward que li permet seleccionar acuradament el punt de treball i seleccionar al millor estat de commutació en cada moment. La combinació del SHC amb el feedforward garanteix un comportament robust amb una alta dinàmica en totes les condicions de funcionament. El concepte bàsic del mètode feedforward proposat no usa sensors i està basat en detectar la tensió de l'inversor que inclou les components harmòniques. El mètode està basat en l'ús d'integradors generalitzats de segon ordre (second order generatlized integrators, SOGI) per tal de detectar les components harmòniques de la tensió de sortida de l'inversor. El sistema pot operar sense sensor de tensió, fins i tot en situacions de defecte de la tensió. Fins i tot, la informació extreta del SOGI es pot usar per altres llaços de control d'ordre superior com el control de la potencia usant les components simètriques. Per a determinar els millors estats de commutació de l'inversor amb el menor esforç s'usa en el mètode proposat en aquesta tesi un canvi de coordenades que usa valor enters. Aixo permet l'ús de relacions matemàtiques senzilles que es poden implementar fàcilment i que requereixen una menor potencia de càlcul. A més, el mètode és fàcilment generalitzable . En la tesi es presenten simulacions i resultats experimentals en convertidors multinivell de tres i cinc nivells per tal d'investigar i demostrar les funcionalitats del sistema de control proposat. Tant les simulacions com els resultats experimentals es realitzen en totes les condicions possibles de la xarxa elèctrica, estat estacionari, sots i distorsions harmòniquesPostprint (published version

    Triangle Carrier-Based DPWM for Three-Level NPC Inverters

    Get PDF

    Three-level neutral point-clamped (NPC) traction inverter drive for electric vehicles

    Get PDF
    The motivation of this project was to develop a three level neutral point clamped (NPC) traction inverter for a permanent magnet synchronous machine drive. The three-level inverter helps to reduce the total inverter losses at higher switching frequencies, compared to a two-level inverter for electric vehicle applications. The three-level inverter has also more power switches compared to the two-level inverter. This helps to reduce the voltage stress across the switches and the machine winding. In addition, it also allows an increase in the DC-link voltage, which in turn helps to reduce the DC-link current, phase conductor size and the associated losses. Moreover, at higher DC-bus voltages the power switches will have lower thermal stress when compared to the 2-level. However, the NPC inverter topologies have an inherent problem of DC-link voltage balancing. In the initial part of this thesis, a novel space vector based DC-link voltage balancing strategy is proposed. This strategy can keep the two DC-link capacitor voltages balanced during transient changes in both speed and torque. The performance of the three-level inverter system is then compared with a two-level inverter based drive to validate its performance improvement. The results showed a significant reduction in total voltage and current harmonic distortions, reduced total inverter losses (by 2/3rd) and was even was able to keep the neutral point fluctuation low at all operating load power factor conditions. The second motivation of this thesis was to reduce the computational time in the real-time implementation of the control logic. For this purpose, a modified carrier and hybrid-carrier based PWM strategy was proposed, which also kept the DC-link capacitor voltages balanced. The modified carrier based strategy was able to reduce the switching losses compared to the conventional strategies, while the hybrid-carrier based strategy kept the advantages of both carrier and the space vector techniques. Finally, a performance comparison study was carried out to compare the total harmonic distortion, switching loss distribution, and total inverter loss of all the four proposed strategies

    Power Electronic Converter Configuration and Control for DC Microgrid Systems

    Get PDF

    Reducing neutral-point voltage fluctuation in NPC three-level active power filters

    Get PDF
    Shunt active power filters (SAPFs) have been widely used to improve power quality of the grid by mitigating harmonics injected from nonlinear loads. This paper presents a new method for improving the performance of SAPFs using neutral-point-clamped (NPC) three-level inverters. NPC three-level inverters often suffer excessive voltage fluctuations at the neutral-point of DC-link capacitors, which may damage switching devices and cause additional high harmonic distortion of the output voltage. In order to solve the problem, two compensating schemes are proposed to restrict voltage fluctuation in the inverters. The first is voltage dependent, adopting a voltage compensation method, while the second is current dependent, using a current compensation method. The paper describes the respective circuit architectures and principles of operation. Corresponding models are mathematically formulated and evaluated under typical balanced and unbalanced working load conditions. The results show that both schemes are able to alleviate considerably voltage oscillations and hence harmonic distortions, and the current-compensated NPC inverter outperforms the voltage-compensated NPC inverter. Consequently, it is shown that the proposed approaches are effective and feasible for improving power quality of the grid when connected to nonlinear loads

    Hysteresis current regulation of voltage source inverters with constant switching frequency

    Get PDF
    The thesis presents an integrated approach for constant frequency closed-loop hysteresis current control of a VSI. The proposed approach uses the fact that the switching frequency of a fixed-band hysteresis-controlled inverter varies according to the average load voltage. A novel technique is used to measure this average voltage by capturing transition times of the phase leg switching events, to avoid the frequency roll-off effects of using a low pass filter. The average voltage is then used to vary the hysteresis band in order to keep the VSI switching frequency constant. Next, a refinement is applied to the variable band to synchronise the zero-crossing of the current error to a fixed reference clock. The zero-crossing time is calculated by linearly interpolating between the captured switching transition times, to avoid the need for direct measurement of the zero-crossing event. This achieves a more robust and accurate synchronization process compared to current state-of-the-art time-based and deadbeat hysteresis controllers. For a three-phase VSI, the common mode current is subtracted from the phase leg current error that is calculated from three-phase leg gate signals. Further enhancements are then presented to extend the linear modulation range by 15%, to maintain excellent switching stability during excursions into overmodulation and to replace the third phase regulator with a fixed frequency directly modulated phase leg. The overall result is a two-level hysteresis current control approach with a harmonic performance that is similar to open-loop CSVM. The average voltage calculation of the phase leg switched voltage then allows the integrated control concept to be applied to three-level three-phase multilevel topologies. Firstly, it allows the development of a three-level variable hysteresis band with band refinement similar to a two-level inverter. Secondly, it facilitates the development of a logic decoder based on the identification of the average voltage zero-crossings, so that only one hysteresis comparator is required per phase leg. A finite state machine is then developed to utilize the redundant switching states of the VSI similar to open-loop phase-shifted PWM. The control concept is then extended to suit a three-phase system by compensating for the common mode interacting current in a similar way as was done for two-level inverters. Further developments are then presented to synchronize the three-phase current errors to a fixed reference clock. The overall result is a three-level hysteresis current control approach that achieves a performance similar to open-loop phase disposition (PD) pulse width modulated three-phase multilevel inverter

    OPTIMAL PULSE WIDTH MODULATION OF MULTILEVEL INVERTERS FOR MEDIUM VOLTAGE DRIVES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Advance control of multilevel converters for integration of distributed generation resources into ac grid

    Get PDF
    Premi extraordinari doctorat curs 2011-2012, àmbit d’Enginyeria IndustrialDistributed generation (DG) with a converter interface to the power grid is found in many of the green power resources applications. This dissertation describes a multi-objective control technique of voltage source converter (VSC) based on multilevel converter topologies, for integration of DG resources based on renewable energy (and non-renewable energy)to the power grid. The aims have been set to maintain a stable operation of the power grid, in case of di erent types of grid-connected loads. The proposed method provides compensation for active, reactive, and harmonic load current components. A proportional-integral (PI) control law is derived through linearization of the inherently non-linear DG system model, so that the tasks of current control dynamics and dc capacitor voltage dynamics become decoupled. This decoupling allows us to control the DG output currents and the dc bus voltage independently of each other, thereby providing either one of these decoupled subsystems a dynamic response that signi cantly slower than that of the other. To overcome the drawbacks of the conventional method, a computational control delay compensation method, which delaylessly and accurately generates the DG reference currents, is proposed. The rst step is to extract the DG reference currents from the sensed load currents by applying the stationary reference frame and then transferred into synchronous reference frame method, and then, the reference currents are modi ed, so that the delay will be compensated. The transformed variables are used in control of the multilevel voltage source converter as the heart of the interfacing system between DG resources and power grid. By setting appropriate compensation current references from the sensed load currents in control circuit loop of DG link, the active, reactive, and harmonic load current components will be compensated with fast dynamic response, thereby achieving sinusoidal grid currents in phase with load voltages while required power of loads is more than the maximum injected power of the DG resources. The converter, which is controlled by the described control strategy, guarantees maximum injection of active power to the grid continuously, unity displacement power factor of power grid, and reduced harmonic load currents in the common coupling point. In addition, high current overshoot does not exist during connection of DG link to the power grid, and the proposed integration strategy is insensitive to grid overload.La Generació Distribuïda (DG) injectada a la xarxa amb un convertidor estàtic és una solució molt freqüent en l'ús de molts dels recursos renovables. Aquesta tesis descriu una técnica de control multi-objectiu del convertidor en font de tensió (VSC), basat en les topologies de convertidor multinivell, per a la integració de les fonts distribuïdes basades en energies renovables i també de no renovables.Els objectius fixats van encaminats a mantenir un funcionament estable de la xarxa elèctrica en el cas de la connexió de diferents tipus de càrregues. El mètode de control proposat ofereix la possibilitat de compensació de les components actives i reactives de la potencia, i les components harmòniques del corrent consumit per les càrregues.La llei de control proporcional-Integral (PI) s’obté de la linearització del model inherentment no lineal del sistema, de forma que el problema de control del corrent injectat i de la tensió d’entrada del convertidor queden desacoblats. Aquest desacoblament permet el control dels corrents de sortida i la tensió del bus de forma independent, però amb un d’ells amb una dinàmica inferior.Per superar els inconvenients del mètode convencional, s’usa un retard computacional, que genera les senyals de referència de forma acurada i sense retard. El primer pas es calcular els corrents de referència a partir de les mesures de corrent. Aquest càlcul es fa primer transformant les mesures a la referència estacionaria per després transformar aquests valors a la referència síncrona. En aquest punt es on es poden compensar els retards.Les variables transformades son usades en els llaços de control del convertidor multinivell. Mitjançant aquests llaços de control i les referències adequades, el convertidor és capaç de compensar la potencia activa, reactiva i els corrents harmònics de la càrrega amb una elevada resposta dinàmica, obtenint uns corrents de la xarxa de forma completament sinusoïdal, i en fase amb les tensions.El convertidor, controlat amb el mètode descrit, garanteix la màxima injecció de la potencia activa, la injecció de la potencia reactiva per compensar el factor de potencia de la càrrega, i la reducció de les components harmòniques dels corrents consumits per la càrrega. A més, garanteix una connexió suau entre la font d’energia i la xarxa. El sistema proposat es insensible en front de la sobrecarrega de la xarxaAward-winningPostprint (published version
    corecore