179 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationInteractive editing and manipulation of digital media is a fundamental component in digital content creation. One media in particular, digital imagery, has seen a recent increase in popularity of its large or even massive image formats. Unfortunately, current systems and techniques are rarely concerned with scalability or usability with these large images. Moreover, processing massive (or even large) imagery is assumed to be an off-line, automatic process, although many problems associated with these datasets require human intervention for high quality results. This dissertation details how to design interactive image techniques that scale. In particular, massive imagery is typically constructed as a seamless mosaic of many smaller images. The focus of this work is the creation of new technologies to enable user interaction in the formation of these large mosaics. While an interactive system for all stages of the mosaic creation pipeline is a long-term research goal, this dissertation concentrates on the last phase of the mosaic creation pipeline - the composition of registered images into a seamless composite. The work detailed in this dissertation provides the technologies to fully realize interactive editing in mosaic composition on image collections ranging from the very small to massive in scale

    Distributed GraphLab: A Framework for Machine Learning in the Cloud

    Full text link
    While high-level data parallel frameworks, like MapReduce, simplify the design and implementation of large-scale data processing systems, they do not naturally or efficiently support many important data mining and machine learning algorithms and can lead to inefficient learning systems. To help fill this critical void, we introduced the GraphLab abstraction which naturally expresses asynchronous, dynamic, graph-parallel computation while ensuring data consistency and achieving a high degree of parallel performance in the shared-memory setting. In this paper, we extend the GraphLab framework to the substantially more challenging distributed setting while preserving strong data consistency guarantees. We develop graph based extensions to pipelined locking and data versioning to reduce network congestion and mitigate the effect of network latency. We also introduce fault tolerance to the GraphLab abstraction using the classic Chandy-Lamport snapshot algorithm and demonstrate how it can be easily implemented by exploiting the GraphLab abstraction itself. Finally, we evaluate our distributed implementation of the GraphLab abstraction on a large Amazon EC2 deployment and show 1-2 orders of magnitude performance gains over Hadoop-based implementations.Comment: VLDB201

    New Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty

    Get PDF
    Multidimensional imaging techniques provide powerful ways to examine various kinds of scientific questions. The routinely produced data sets in the terabyte-range, however, can hardly be analyzed manually and require an extensive use of automated image analysis. The present work introduces a new concept for the estimation and propagation of uncertainty involved in image analysis operators and new segmentation algorithms that are suitable for terabyte-scale analyses of 3D+t microscopy images

    New Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty

    Get PDF
    Multidimensional imaging techniques provide powerful ways to examine various kinds of scientific questions. The routinely produced datasets in the terabyte-range, however, can hardly be analyzed manually and require an extensive use of automated image analysis. The present thesis introduces a new concept for the estimation and propagation of uncertainty involved in image analysis operators and new segmentation algorithms that are suitable for terabyte-scale analyses of 3D+t microscopy images.Comment: 218 pages, 58 figures, PhD thesis, Department of Mechanical Engineering, Karlsruhe Institute of Technology, published online with KITopen (License: CC BY-SA 3.0, http://dx.doi.org/10.5445/IR/1000057821

    Monitoring and analysis system for performance troubleshooting in data centers

    Get PDF
    It was not long ago. On Christmas Eve 2012, a war of troubleshooting began in Amazon data centers. It started at 12:24 PM, with an mistaken deletion of the state data of Amazon Elastic Load Balancing Service (ELB for short), which was not realized at that time. The mistake first led to a local issue that a small number of ELB service APIs were affected. In about six minutes, it evolved into a critical one that EC2 customers were significantly affected. One example was that Netflix, which was using hundreds of Amazon ELB services, was experiencing an extensive streaming service outage when many customers could not watch TV shows or movies on Christmas Eve. It took Amazon engineers 5 hours 42 minutes to find the root cause, the mistaken deletion, and another 15 hours and 32 minutes to fully recover the ELB service. The war ended at 8:15 AM the next day and brought the performance troubleshooting in data centers to world’s attention. As shown in this Amazon ELB case.Troubleshooting runtime performance issues is crucial in time-sensitive multi-tier cloud services because of their stringent end-to-end timing requirements, but it is also notoriously difficult and time consuming. To address the troubleshooting challenge, this dissertation proposes VScope, a flexible monitoring and analysis system for online troubleshooting in data centers. VScope provides primitive operations which data center operators can use to troubleshoot various performance issues. Each operation is essentially a series of monitoring and analysis functions executed on an overlay network. We design a novel software architecture for VScope so that the overlay networks can be generated, executed and terminated automatically, on-demand. From the troubleshooting side, we design novel anomaly detection algorithms and implement them in VScope. By running anomaly detection algorithms in VScope, data center operators are notified when performance anomalies happen. We also design a graph-based guidance approach, called VFocus, which tracks the interactions among hardware and software components in data centers. VFocus provides primitive operations by which operators can analyze the interactions to find out which components are relevant to the performance issue. VScope’s capabilities and performance are evaluated on a testbed with over 1000 virtual machines (VMs). Experimental results show that the VScope runtime negligibly perturbs system and application performance, and requires mere seconds to deploy monitoring and analytics functions on over 1000 nodes. This demonstrates VScope’s ability to support fast operation and online queries against a comprehensive set of application to system/platform level metrics, and a variety of representative analytics functions. When supporting algorithms with high computation complexity, VScope serves as a ‘thin layer’ that occupies no more than 5% of their total latency. Further, by using VFocus, VScope can locate problematic VMs that cannot be found via solely application-level monitoring, and in one of the use cases explored in the dissertation, it operates with levels of perturbation of over 400% less than what is seen for brute-force and most sampling-based approaches. We also validate VFocus with real-world data center traces. The experimental results show that VFocus has troubleshooting accuracy of 83% on average.Ph.D

    Socio-Cognitive and Affective Computing

    Get PDF
    Social cognition focuses on how people process, store, and apply information about other people and social situations. It focuses on the role that cognitive processes play in social interactions. On the other hand, the term cognitive computing is generally used to refer to new hardware and/or software that mimics the functioning of the human brain and helps to improve human decision-making. In this sense, it is a type of computing with the goal of discovering more accurate models of how the human brain/mind senses, reasons, and responds to stimuli. Socio-Cognitive Computing should be understood as a set of theoretical interdisciplinary frameworks, methodologies, methods and hardware/software tools to model how the human brain mediates social interactions. In addition, Affective Computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects, a fundamental aspect of socio-cognitive neuroscience. It is an interdisciplinary field spanning computer science, electrical engineering, psychology, and cognitive science. Physiological Computing is a category of technology in which electrophysiological data recorded directly from human activity are used to interface with a computing device. This technology becomes even more relevant when computing can be integrated pervasively in everyday life environments. Thus, Socio-Cognitive and Affective Computing systems should be able to adapt their behavior according to the Physiological Computing paradigm. This book integrates proposals from researchers who use signals from the brain and/or body to infer people's intentions and psychological state in smart computing systems. The design of this kind of systems combines knowledge and methods of ubiquitous and pervasive computing, as well as physiological data measurement and processing, with those of socio-cognitive and affective computing

    Geospatial Information Research: State of the Art, Case Studies and Future Perspectives

    Get PDF
    Geospatial information science (GI science) is concerned with the development and application of geodetic and information science methods for modeling, acquiring, sharing, managing, exploring, analyzing, synthesizing, visualizing, and evaluating data on spatio-temporal phenomena related to the Earth. As an interdisciplinary scientific discipline, it focuses on developing and adapting information technologies to understand processes on the Earth and human-place interactions, to detect and predict trends and patterns in the observed data, and to support decision making. The authors – members of DGK, the Geoinformatics division, as part of the Committee on Geodesy of the Bavarian Academy of Sciences and Humanities, representing geodetic research and university teaching in Germany – have prepared this paper as a means to point out future research questions and directions in geospatial information science. For the different facets of geospatial information science, the state of art is presented and underlined with mostly own case studies. The paper thus illustrates which contributions the German GI community makes and which research perspectives arise in geospatial information science. The paper further demonstrates that GI science, with its expertise in data acquisition and interpretation, information modeling and management, integration, decision support, visualization, and dissemination, can help solve many of the grand challenges facing society today and in the future

    Postural injury risk assessment for industrial processes using advanced sensory systems

    Full text link
    The major contributions of this research delivered both advancements and novel frameworks to enhance the current methods of postural assessments within industrial environments. This included the development of load vs repetition analysis, A novel BVH Model and a low cost ergonomic scoring tool relying on pixel labelling
    • 

    corecore