13,509 research outputs found

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    New intelligent network approach for monitoring physiological parameters : the case of Benin

    Get PDF
    Benin health system is facing many challenges as: (i) affordable high-quality health care to a growing population providing need, (ii) patients’ hospitalization time reduction, (iii) and presence time of the nursing staff optimization. Such challenges can be solved by remote monitoring of patients. To achieve this, five steps were followed. 1) Identification of the Wireless Body Area Network (WBAN) systems’ characteristics and the patient physiological parameters’ monitoring. 2) The national Integrated Patient Monitoring Network (RIMP) architecture modeling in a cloud of Technocenters. 3) Cross-analysis between the characteristics and the functional requirements identified. 4) Each Technocenter’s functionality simulation through: a) the design approach choice inspired by the life cycle of V systems; b) functional modeling through SysML Language; c) the communication technology and different architectures of sensor networks choice studying. 5) An estimate of the material resources of the national RIMP according to physiological parameters. A National Integrated Network for Patient Monitoring (RNIMP) remotely, ambulatory or not, was designed for Beninese health system. The implementation of the RNIMP will contribute to improve patients’ care in Benin. The proposed network is supported by a repository that can be used for its implementation, monitoring and evaluation. It is a table of 36 characteristic elements each of which must satisfy 5 requirements relating to: medical application, design factors, safety, performance indicators and materiovigilance

    Digital-Twins towards Cyber-Physical Systems: A Brief Survey

    Get PDF
    Cyber-Physical Systems (CPS) are integrations of computation and physical processes. Physical processes are monitored and controlled by embedded computers and networks, which frequently have feedback loops where physical processes affect computations and vice versa. To ease the analysis of a system, the costly physical plants can be replaced by the high-fidelity virtual models that provide a framework for Digital-Twins (DT). This paper aims to briefly review the state-of-the-art and recent developments in DT and CPS. Three main components in CPS, including communication, control, and computation, are reviewed. Besides, the main tools and methodologies required for implementing practical DT are discussed by following the main applications of DT in the fourth industrial revolution through aspects of smart manufacturing, sixth wireless generation (6G), health, production, energy, and so on. Finally, the main limitations and ideas for future remarks are talked about followed by a short guideline for real-world application of DT towards CPS

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    Revolutionizing Healthcare Organizations with Operational Excellence and Healthcare 4.0: A Systematic Review of the State-of-the-Art Literature

    Get PDF
    Purpose- This study examines current research on the relationship between Operational Excellence and Healthcare 4.0 for healthcare organizations. Design/Methodology/Approach- We have performed a systematic literature review of 102 documents published between 2011 to 2022 from the Scopus database to identify the research trends on Operational Excellence and Healthcare 4.0. Through a descriptive bibliometric analysis, we have highlighted the year-wise trend in publication, top authors, prominent sources of publications, the country-wise spread of research activities, and subject area analysis. Further, through content analysis, we have identified four clusters and proposed directions for future research of each identified cluster. Findings- Results reflect overall growth in this area, with a few parts of the world being underrepresented in research related to Operational Excellence and Healthcare 4.0. The content analysis focused on describing challenges pertaining to healthcare industries and the role of Operational Excellence tools and Healthcare 4.0 technologies in dealing with various healthcare delivery aspects. We concluded our analysis by proposing a theoretical framework and providing theoretical and managerial implications of the study. Originality- The article is one of the first to analyze the existing literature on the healthcare sector at the interface of Operational Excellence and Healthcare 4.0 technologies. The conceptual framework and cluster-wise future research prepositions are some of the unique offerings of the study

    Demystifying Quantum Blockchain for Healthcare

    Full text link
    The application of blockchain technology can be beneficial in the field of healthcare as well as in the fight against the COVID-19 epidemic. In this work, the importance of blockchain is analyzed and it is observed that blockchain technology and the processes associated with it will be utilised in the healthcare systems of the future for data acquisition from sensors, automatic patient monitoring, and secure data storage. This technology substantially simplifies the process of carrying out operations because it can store a substantial quantity of data in a dispersed and secure manner, as well as enable access whenever and wherever it is required to do so. With the assistance of quantum blockchain, the benefits of quantum computing, such as the capability to acquire thermal imaging based on quantum computing and the speed with which patients may be located and monitored, can all be exploited to their full potential. Quantum blockchain is another tool that can be utilised to maintain the confidentiality, authenticity, and accessibility of data records. The processing of medical records could potentially benefit from greater speed and privacy if it combines quantum computing and blockchain technology. The authors of this paper investigate the possible benefits and applications of blockchain and quantum technologies in the field of medicine, pharmacy and healthcare systems. In this context, this work explored and compared quantum technologies and blockchain-based technologies in conjunction with other cutting-edge information and communications technologies such as ratification intelligence, machine learning, drones, and so on

    Empowering Smart Cities with Fog Computing: A Versatile Framework for Enhanced Healthcare Services and Beyond

    Get PDF
    Fog Computing represents a distributed computing infrastructure strategically positioned at the network's edge, acting as an intermediate layer between remote cloud services and the data-generating smart devices on the ground. Leveraging this concept, a flexible and efficient smart city design emerges, offering a diverse range of applications, including smart healthcare, car parking, power management, water management, and waste management. The implementation of Fog computing enables reduced data processing latency and equitable workload distribution across fog nodes. The smart city system comprises several layers, namely connection, real-time processing, neighborhood linking, main processing, and data server layers. The flexibility of this framework allows for the scaling up or down of layers depending on specific smart city applications. In a case study focused on Smart healthcare services, the iFogSim platform was utilized to evaluate the system's performance. Notably, the results demonstrated a significant reduction in network usage, data processing latency, and processing costs when compared to traditional cloud computing solutions. Consequently, this improvement in efficiency translated into an enhanced user experience, offering superior scalability and reliability to users utilizing smart city services, including healthcare facilities

    Road2CPS priorities and recommendations for research and innovation in cyber-physical systems

    Get PDF
    This document summarises the findings of the Road2CPS project, co-financed by the European Commission under the H2020 Research and Innovation Programme, to develop a roadmap and recommendations for strategic action required for future deployment of Cyber-Physical Systems (CPS). The term Cyber-Physical System describes hardware-software systems, which tightly couple the physical world and the virtual world. They are established from networked embedded systems that are connected with the outside world through sensors and actuators and have the capability to collaborate, adapt, and evolve. In the ARTEMIS Strategic Research Agenda 2016, CPS are described as ‘Embedded Intelligent ICT Systems’ that make products smarter, more interconnected, interdependent, collaborative, and autonomous. In the future world of CPS, a huge number of devices connected to the physical world will be able to exchange data with each other, access web services, and interact with people. Moreover, information systems will sense, monitor and even control the physical world via Cyber-Physical Systems and the Internet of Things (HiPEAC Vision 2015). Cyber-Physical Systems find their application in many highly relevant areas to our society: multi-modal transport, health, smart factories, smart grids and smart cities amongst others. The deployment of Cyber-Physical Systems (CPS) is expected to increase substantially over the next decades, holding great potential for novel applications and innovative product development. Digital technologies have already pervaded day-to-day life massively, affecting all kinds of interactions between humans and their environment. However, the inherent complexity of CPSs, as well as the need to meet optimised performance and comply with essential requirements like safety, privacy, security, raises many questions that are currently being explored by the research community. Road2CPS aims at accelerating uptake and implementation of these efforts. The Road2CPS project identifying and analysing the relevant technology fields and related research priorities to fuel the development of trustworthy CPS, as well as the specific technologies, needs and barriers for a successful implementation in different application domains and to derive recommendations for strategic action. The document at hand was established through an interactive, community-based approach, involving over 300 experts from academia, industry and policy making through a series of workshops and consultations. Visions and priorities of recently produced roadmaps in the area of CPS, IoT (Internet of Things), SoS (System-of-Systems) and FoF (Factories of the Future) were discussed, complemented by sharing views and perspectives on CPS implementation in application domains, evolving multi-sided eco-systems as well as business and policy related barriers, enablers and success factors. From the workshops and accompanying activities recommendations for future research and innovation activities were derived and topics and timelines for their implementation proposed. Amongst the technological topics, and related future research priorities ‘integration, interoperability, standards’ ranged highest in all workshops. The topic is connected to digital platforms and reference architectures, which have already become a key priority theme for the EC and their Digitisation Strategy as well as the work on the right standards to help successful implementation of CPSs. Other themes of very high technology/research relevance revealed to be ‘modelling and simulation’, ‘safety and dependability’, ‘security and privacy’, ‘big data and real-time analysis’, ‘ubiquitous autonomy and forecasting’ as well as ‘HMI/human machine awareness’. Next to this, themes emerged including ‘decision making and support’, ‘CPS engineering (requirements, design)’, ‘CPS life-cycle management’, ‘System-of-Systems’, ‘distributed management’, ‘cognitive CPS’, ‘emergence, complexity, adaptability and flexibility’ and work on the foundations of CPS and ‘cross-disciplinary research/CPS Science’
    • …
    corecore