3,327 research outputs found

    Digital Predistortion in Large-Array Digital Beamforming Transmitters

    Get PDF
    In this article, we propose a novel digital predistortion (DPD) solution that allows to considerably reduce the complexity resulting from linearizing a set of power amplifiers (PAs) in single-user large-scale digital beamforming transmitters. In contrast to current state-of-the art solutions that assume a dedicated DPD per power amplifier, which is unfeasible in the context of large antenna arrays, the proposed solution only requires a single DPD in order to linearize an arbitrary number of power amplifiers. To this end, the proposed DPD predistorts the signal at the input of the digital precoder based on minimizing the nonlinear distortion of the combined signal at the intended receiver direction. This is a desirable feature, since the resulting emissions in other directions get partially diluted due to less coherent superposition. With this approach, only a single DPD is required, yielding great complexity and energy savings.Comment: 8 pages, Accepted for publication in Asilomar Conference on Signals, Systems, and Computer

    Minimum BER Precoding in 1-Bit Massive MIMO Systems

    Full text link
    1-bit digital-to-analog (DACs) and analog-to-digital converters (ADCs) are gaining more interest in massive MIMO systems for economical and computational efficiency. We present a new precoding technique to mitigate the inter-user-interference (IUI) and the channel distortions in a 1-bit downlink MUMISO system with QPSK symbols. The transmit signal vector is optimized taking into account the 1-bit quantization. We develop a sort of mapping based on a look-up table (LUT) between the input signal and the transmit signal. The LUT is updated for each channel realization. Simulation results show a significant gain in terms of the uncoded bit-error-ratio (BER) compared to the existing linear precoding techniques.Comment: Presented in IEEE SAM 2016, 10th-13th July 2016, Rio De Janeiro, Brazi

    On the Impact of Hardware Impairments on Massive MIMO

    Get PDF
    Massive multi-user (MU) multiple-input multiple-output (MIMO) systems are one possible key technology for next generation wireless communication systems. Claims have been made that massive MU-MIMO will increase both the radiated energy efficiency as well as the sum-rate capacity by orders of magnitude, because of the high transmit directivity. However, due to the very large number of transceivers needed at each base-station (BS), a successful implementation of massive MU-MIMO will be contingent on of the availability of very cheap, compact and power-efficient radio and digital-processing hardware. This may in turn impair the quality of the modulated radio frequency (RF) signal due to an increased amount of power-amplifier distortion, phase-noise, and quantization noise. In this paper, we examine the effects of hardware impairments on a massive MU-MIMO single-cell system by means of theory and simulation. The simulations are performed using simplified, well-established statistical hardware impairment models as well as more sophisticated and realistic models based upon measurements and electromagnetic antenna array simulations.Comment: 7 pages, 9 figures, Accepted for presentation at Globe-Com workshop on Massive MIM
    • …
    corecore