993 research outputs found

    A comparison of statistical machine learning methods in heartbeat detection and classification

    Get PDF
    In health care, patients with heart problems require quick responsiveness in a clinical setting or in the operating theatre. Towards that end, automated classification of heartbeats is vital as some heartbeat irregularities are time consuming to detect. Therefore, analysis of electro-cardiogram (ECG) signals is an active area of research. The methods proposed in the literature depend on the structure of a heartbeat cycle. In this paper, we use interval and amplitude based features together with a few samples from the ECG signal as a feature vector. We studied a variety of classification algorithms focused especially on a type of arrhythmia known as the ventricular ectopic fibrillation (VEB). We compare the performance of the classifiers against algorithms proposed in the literature and make recommendations regarding features, sampling rate, and choice of the classifier to apply in a real-time clinical setting. The extensive study is based on the MIT-BIH arrhythmia database. Our main contribution is the evaluation of existing classifiers over a range sampling rates, recommendation of a detection methodology to employ in a practical setting, and extend the notion of a mixture of experts to a larger class of algorithms

    Spatio-Temporal Multimedia Big Data Analytics Using Deep Neural Networks

    Get PDF
    With the proliferation of online services and mobile technologies, the world has stepped into a multimedia big data era, where new opportunities and challenges appear with the high diversity multimedia data together with the huge amount of social data. Nowadays, multimedia data consisting of audio, text, image, and video has grown tremendously. With such an increase in the amount of multimedia data, the main question raised is how one can analyze this high volume and variety of data in an efficient and effective way. A vast amount of research work has been done in the multimedia area, targeting different aspects of big data analytics, such as the capture, storage, indexing, mining, and retrieval of multimedia big data. However, there is insufficient research that provides a comprehensive framework for multimedia big data analytics and management. To address the major challenges in this area, a new framework is proposed based on deep neural networks for multimedia semantic concept detection with a focus on spatio-temporal information analysis and rare event detection. The proposed framework is able to discover the pattern and knowledge of multimedia data using both static deep data representation and temporal semantics. Specifically, it is designed to handle data with skewed distributions. The proposed framework includes the following components: (1) a synthetic data generation component based on simulation and adversarial networks for data augmentation and deep learning training, (2) an automatic sampling model to overcome the imbalanced data issue in multimedia data, (3) a deep representation learning model leveraging novel deep learning techniques to generate the most discriminative static features from multimedia data, (4) an automatic hyper-parameter learning component for faster training and convergence of the learning models, (5) a spatio-temporal deep learning model to analyze dynamic features from multimedia data, and finally (6) a multimodal deep learning fusion model to integrate different data modalities. The whole framework has been evaluated using various large-scale multimedia datasets that include the newly collected disaster-events video dataset and other public datasets

    Feature Selection by Multiobjective Optimization: Application to Spam Detection System by Neural Networks and Grasshopper Optimization Algorithm

    Get PDF
    Networks are strained by spam, which also overloads email servers and blocks mailboxes with unwanted messages and files. Setting the protective level for spam filtering might become even more crucial for email users when malicious steps are taken since they must deal with an increase in the number of valid communications being marked as spam. By finding patterns in email communications, spam detection systems (SDS) have been developed to keep track of spammers and filter email activity. SDS has also enhanced the tool for detecting spam by reducing the rate of false positives and increasing the accuracy of detection. The difficulty with spam classifiers is the abundance of features. The importance of feature selection (FS) comes from its role in directing the feature selection algorithm’s search for ways to improve the SDS’s classification performance and accuracy. As a means of enhancing the performance of the SDS, we use a wrapper technique in this study that is based on the multi-objective grasshopper optimization algorithm (MOGOA) for feature extraction and the recently revised EGOA algorithm for multilayer perceptron (MLP) training. The suggested system’s performance was verified using the SpamBase, SpamAssassin, and UK-2011 datasets. Our research showed that our novel approach outperformed a variety of established practices in the literature by as much as 97.5%, 98.3%, and 96.4% respectively.©2022 the Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed

    A detection-based pattern recognition framework and its applications

    Get PDF
    The objective of this dissertation is to present a detection-based pattern recognition framework and demonstrate its applications in automatic speech recognition and broadcast news video story segmentation. Inspired by the studies of modern cognitive psychology and real-world pattern recognition systems, a detection-based pattern recognition framework is proposed to provide an alternative solution for some complicated pattern recognition problems. The primitive features are first detected and the task-specific knowledge hierarchy is constructed level by level; then a variety of heterogeneous information sources are combined together and the high-level context is incorporated as additional information at certain stages. A detection-based framework is a â divide-and-conquerâ design paradigm for pattern recognition problems, which will decompose a conceptually difficult problem into many elementary sub-problems that can be handled directly and reliably. Some information fusion strategies will be employed to integrate the evidence from a lower level to form the evidence at a higher level. Such a fusion procedure continues until reaching the top level. Generally, a detection-based framework has many advantages: (1) more flexibility in both detector design and fusion strategies, as these two parts can be optimized separately; (2) parallel and distributed computational components in primitive feature detection. In such a component-based framework, any primitive component can be replaced by a new one while other components remain unchanged; (3) incremental information integration; (4) high level context information as additional information sources, which can be combined with bottom-up processing at any stage. This dissertation presents the basic principles, criteria, and techniques for detector design and hypothesis verification based on the statistical detection and decision theory. In addition, evidence fusion strategies were investigated in this dissertation. Several novel detection algorithms and evidence fusion methods were proposed and their effectiveness was justified in automatic speech recognition and broadcast news video segmentation system. We believe such a detection-based framework can be employed in more applications in the future.Ph.D.Committee Chair: Lee, Chin-Hui; Committee Member: Clements, Mark; Committee Member: Ghovanloo, Maysam; Committee Member: Romberg, Justin; Committee Member: Yuan, Min

    INVESTIGATING THE EVOLUTION OF TREE BOOSTING MODELS WITH VISUAL ANALYTICS

    Get PDF
    The present disclosure relates a method and a visual interactive system for tree boosting (VISTB). Tree boosting uses a group of sequentially generated weak learners (i.e., decision trees), each learns from the mistakes of its predecessor, to push the model’s decision boundary towards the true boundary. As the number of trees keeps increasing over training, it is important to reveal how the newly added trees change the predictions of individual data instances, and how the impact of different data features evolve. To accomplish these goals, in this present disclosure, proposes a new design of temporal confusion matrix, an effective interface is provided to users to track data instances’ predictions across the tree boosting process. Also, an improved visualization is presented the users to better illustrate and compare the impact of individual data features across time. Integrating these components with a tree structure visualization component in coordinated views
    corecore