244 research outputs found

    Image annotation and retrieval based on multi-modal feature clustering and similarity propagation.

    Get PDF
    The performance of content-based image retrieval systems has proved to be inherently constrained by the used low level features, and cannot give satisfactory results when the user\u27s high level concepts cannot be expressed by low level features. In an attempt to bridge this semantic gap, recent approaches started integrating both low level-visual features and high-level textual keywords. Unfortunately, manual image annotation is a tedious process and may not be possible for large image databases. In this thesis we propose a system for image retrieval that has three mains components. The first component of our system consists of a novel possibilistic clustering and feature weighting algorithm based on robust modeling of the Generalized Dirichlet (GD) finite mixture. Robust estimation of the mixture model parameters is achieved by incorporating two complementary types of membership degrees. The first one is a posterior probability that indicates the degree to which a point fits the estimated distribution. The second membership represents the degree of typicality and is used to indentify and discard noise points. Robustness to noisy and irrelevant features is achieved by transforming the data to make the features independent and follow Beta distribution, and learning optimal relevance weight for each feature subset within each cluster. We extend our algorithm to find the optimal number of clusters in an unsupervised and efficient way by exploiting some properties of the possibilistic membership function. We also outline a semi-supervised version of the proposed algorithm. In the second component of our system consists of a novel approach to unsupervised image annotation. Our approach is based on: (i) the proposed semi-supervised possibilistic clustering; (ii) a greedy selection and joining algorithm (GSJ); (iii) Bayes rule; and (iv) a probabilistic model that is based on possibilistic memebership degrees to annotate an image. The third component of the proposed system consists of an image retrieval framework based on multi-modal similarity propagation. The proposed framework is designed to deal with two data modalities: low-level visual features and high-level textual keywords generated by our proposed image annotation algorithm. The multi-modal similarity propagation system exploits the mutual reinforcement of relational data and results in a nonlinear combination of the different modalities. Specifically, it is used to learn the semantic similarities between images by leveraging the relationships between features from the different modalities. The proposed image annotation and retrieval approaches are implemented and tested with a standard benchmark dataset. We show the effectiveness of our clustering algorithm to handle high dimensional and noisy data. We compare our proposed image annotation approach to three state-of-the-art methods and demonstrate the effectiveness of the proposed image retrieval system

    Irregularity-based image regions saliency identification and evaluation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The publisher's final version of record can be found by following the DOI.Saliency or Salient regions extraction form images is still a challenging field since it needs some understanding for the image and the nature of the image. The technique that is suitable in some application is not necessarily useful in other application, thus, saliency enhancement is application oriented. In this paper, a new technique of extracting the salient regions from an image is proposed which utilizes the local features of the surrounding region of the pixels. The level of saliency is then decided based on the global comparison of the saliency-enhanced image. To make the process fully automatic a new Fuzzy-Based thresholding technique has been proposed also. The paper contains a survey of the state-of-the-art methods of saliency evaluation and a new saliency evaluation technique was proposed

    Bridging semantic gap: learning and integrating semantics for content-based retrieval

    Full text link
    Digital cameras have entered ordinary homes and produced^incredibly large number of photos. As a typical example of broad image domain, unconstrained consumer photos vary significantly. Unlike professional or domain-specific images, the objects in the photos are ill-posed, occluded, and cluttered with poor lighting, focus, and exposure. Content-based image retrieval research has yet to bridge the semantic gap between computable low-level information and high-level user interpretation. In this thesis, we address the issue of semantic gap with a structured learning framework to allow modular extraction of visual semantics. Semantic image regions (e.g. face, building, sky etc) are learned statistically, detected directly from image without segmentation, reconciled across multiple scales, and aggregated spatially to form compact semantic index. To circumvent the ambiguity and subjectivity in a query, a new query method that allows spatial arrangement of visual semantics is proposed. A query is represented as a disjunctive normal form of visual query terms and processed using fuzzy set operators. A drawback of supervised learning is the manual labeling of regions as training samples. In this thesis, a new learning framework to discover local semantic patterns and to generate their samples for training with minimal human intervention has been developed. The discovered patterns can be visualized and used in semantic indexing. In addition, three new class-based indexing schemes are explored. The winnertake- all scheme supports class-based image retrieval. The class relative scheme and the local classification scheme compute inter-class memberships and local class patterns as indexes for similarity matching respectively. A Bayesian formulation is proposed to unify local and global indexes in image comparison and ranking that resulted in superior image retrieval performance over those of single indexes. Query-by-example experiments on 2400 consumer photos with 16 semantic queries show that the proposed approaches have significantly better (18% to 55%) average precisions than a high-dimension feature fusion approach. The thesis has paved two promising research directions, namely the semantics design approach and the semantics discovery approach. They form elegant dual frameworks that exploits pattern classifiers in learning and integrating local and global image semantics

    Relational data clustering algorithms with biomedical applications

    Get PDF

    A New Approach to Automatic Saliency Identification in Images Based on Irregularity of Regions

    Get PDF
    This research introduces an image retrieval system which is, in different ways, inspired by the human vision system. The main problems with existing machine vision systems and image understanding are studied and identified, in order to design a system that relies on human image understanding. The main improvement of the developed system is that it uses the human attention principles in the process of image contents identification. Human attention shall be represented by saliency extraction algorithms, which extract the salient regions or in other words, the regions of interest. This work presents a new approach for the saliency identification which relies on the irregularity of the region. Irregularity is clearly defined and measuring tools developed. These measures are derived from the formality and variation of the region with respect to the surrounding regions. Both local and global saliency have been studied and appropriate algorithms were developed based on the local and global irregularity defined in this work. The need for suitable automatic clustering techniques motivate us to study the available clustering techniques and to development of a technique that is suitable for salient points clustering. Based on the fact that humans usually look at the surrounding region of the gaze point, an agglomerative clustering technique is developed utilising the principles of blobs extraction and intersection. Automatic thresholding was needed in different stages of the system development. Therefore, a Fuzzy thresholding technique was developed. Evaluation methods of saliency region extraction have been studied and analysed; subsequently we have developed evaluation techniques based on the extracted regions (or points) and compared them with the ground truth data. The proposed algorithms were tested against standard datasets and compared with the existing state-of-the-art algorithms. Both quantitative and qualitative benchmarking are presented in this thesis and a detailed discussion for the results has been included. The benchmarking showed promising results in different algorithms. The developed algorithms have been utilised in designing an integrated saliency-based image retrieval system which uses the salient regions to give a description for the scene. The system auto-labels the objects in the image by identifying the salient objects and gives labels based on the knowledge database contents. In addition, the system identifies the unimportant part of the image (background) to give a full description for the scene

    Hybrid optimization for k-means clustering learning enhancement

    Get PDF
    In recent years, combinational optimization issues are introduced as critical problems in clustering algorithms to partition data in a way that optimizes the performance of clustering. K-means algorithm is one of the famous and more popular clustering algorithms which can be simply implemented and it can easily solve the optimization issue with less extra information. But the problems associated with Kmeans algorithm are high error rate, high intra cluster distance and low accuracy. In this regard, researchers have worked to improve the problems computationally, creating efficient solutions that lead to better data analysis through the K-means clustering algorithm. The aim of this study is to improve the accuracy of the Kmeans algorithm using hybrid and meta-heuristic methods. To this end, a metaheuristic approach was proposed for the hybridization of K-means algorithm scheme. It obtained better results by developing a hybrid Genetic Algorithm-K-means (GAK- means) and a hybrid Partial Swarm Optimization-K-means (PSO-K-means) method. Finally, the meta-heuristic of Genetic Algorithm-Partial Swarm Optimization (GAPSO) and Partial Swarm Optimization-Genetic Algorithm (PSOGA) through the K-means algorithm were proposed. The study adopted a methodological approach to achieve the goal in three phases. First, it developed a hybrid GA-based K-means algorithm through a new crossover algorithm based on the range of attributes in order to decrease the number of errors and increase the accuracy rate. Then, a hybrid PSO-based K-means algorithm was mooted by a new calculation function based on the range of domain for decreasing intra-cluster distance and increasing the accuracy rate. Eventually, two meta-heuristic algorithms namely GAPSO-K-means and PSOGA-K-means algorithms were introduced by combining the proposed algorithms to increase the number of correct answers and improve the accuracy rate. The approach was evaluated using six integer standard data sets provided by the University of California Irvine (UCI). Findings confirmed that the hybrid optimization approach enhanced the performance of K-means clustering algorithm. Although both GA-K-means and PSO-K-means improved the result of K-means algorithm, GAPSO-K-means and PSOGA-K-means meta-heuristic algorithms outperformed the hybrid approaches. PSOGA-K-means resulted in 5%- 10% more accuracy for all data sets in comparison with other methods. The approach adopted in this study successfully increased the accuracy rate of the clustering analysis and decreased its error rate and intra-cluster distance

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique

    Deliverable D1.1 State of the art and requirements analysis for hypervideo

    Get PDF
    This deliverable presents a state-of-art and requirements analysis report for hypervideo authored as part of the WP1 of the LinkedTV project. Initially, we present some use-case (viewers) scenarios in the LinkedTV project and through the analysis of the distinctive needs and demands of each scenario we point out the technical requirements from a user-side perspective. Subsequently we study methods for the automatic and semi-automatic decomposition of the audiovisual content in order to effectively support the annotation process. Considering that the multimedia content comprises of different types of information, i.e., visual, textual and audio, we report various methods for the analysis of these three different streams. Finally we present various annotation tools which could integrate the developed analysis results so as to effectively support users (video producers) in the semi-automatic linking of hypervideo content, and based on them we report on the initial progress in building the LinkedTV annotation tool. For each one of the different classes of techniques being discussed in the deliverable we present the evaluation results from the application of one such method of the literature to a dataset well-suited to the needs of the LinkedTV project, and we indicate the future technical requirements that should be addressed in order to achieve higher levels of performance (e.g., in terms of accuracy and time-efficiency), as necessary
    corecore