7,298 research outputs found

    Full-Duplex Cognitive Radio: A New Design Paradigm for Enhancing Spectrum Usage

    Full text link
    With the rapid growth of demand for ever-increasing data rate, spectrum resources have become more and more scarce. As a promising technique to increase the efficiency of the spectrum utilization, cognitive radio (CR) technique has the great potential to meet such a requirement by allowing un-licensed users to coexist in licensed bands. In conventional CR systems, the spectrum sensing is performed at the beginning of each time slot before the data transmission. This unfortunately results in two major problems: 1) transmission time reduction due to sensing, and 2) sensing accuracy impairment due to data transmission. To tackle these problems, in this paper we present a new design paradigm for future CR by exploring the full-duplex (FD) techniques to achieve the simultaneous spectrum sensing and data transmission. With FD radios equipped at the secondary users (SUs), SUs can simultaneously sense and access the vacant spectrum, and thus, significantly improve sensing performances and meanwhile increase data transmission efficiency. The aim of this article is to transform the promising conceptual framework into the practical wireless network design by addressing a diverse set of challenges such as protocol design and theoretical analysis. Several application scenarios with FD enabled CR are elaborated, and key open research directions and novel algorithms in these systems are discussed

    Granular Mobility-Factor Analysis Framework for enriching Occupancy Sensing with Doppler Radar

    Get PDF
    With the growing need for adoption of smarter resource control system in existing infrastructure, the proliferation of occupancy sensing is slowly increasing its pace. After reviewing an existing system, we find that utilization of Doppler radar is less progressive in enhancing the accuracy of occupancy sensing operation. Therefore, we introduce a novel analytical model that is meant for incorporating granularity in tracing the psychological periodic characteristic of an object by emphasizing on the mobility and uncertainty movement of an object in the monitoring area. Hence, the model is more emphasized on identifying the rate of change in any periodic physiological characteristic of an object with the aid of mathematical modelling. At the same time, the model extracts certain traits of frequency shift and directionality for better tracking of the unidentified object behavior where its applicabilibility can be generalized in majority of the fields related to object detection

    Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators

    Full text link
    Spectroscopy of whispering-gallery mode (WGM) microresonators has become a powerful scientific tool, enabling detection of single viruses, nanoparticles, and even single molecules. Yet the demonstrated timescale of these schemes has been limited so far to milliseconds or more. Here we introduce a novel scheme that is orders of magnitude faster, capable of capturing complete spectral snapshots of WGM resonances at nanosecond timescales: cavity ring-up spectroscopy (CRUS). Based on sharply-rising detuned probe pulses, CRUS combines the sensitivity of heterodyne measurements with the highest possible, transform-limited acquisition rate. As a demonstration we capture spectra of microtoroid resonators at time intervals as short as 16 ns, directly monitoring sub-microsecond dynamics of their optomechanical vibrations, thermorefractive response and Kerr nonlinearity. CRUS holds promise for the study of fast biological processes such as enzyme kinetics, protein folding and light harvesting, with applications in other fields such as cavity QED and pulsed optomechanics.Comment: 6 pages, 4 figure

    Optical Yagi-Uda nanoantennas

    Get PDF
    Conventional antennas, which are widely employed to transmit radio and TV signals, can be used at optical frequencies as long as they are shrunk to nanometer-size dimensions. Optical nanoantennas made of metallic or high-permittivity dielectric nanoparticles allow for enhancing and manipulating light on the scale much smaller than wavelength of light. Based on this ability, optical nanoantennas offer unique opportunities regarding key applications such as optical communications, photovoltaics, non-classical light emission, and sensing. From a multitude of suggested nanoantenna concepts the Yagi-Uda nanoantenna, an optical analogue of the well-established radio-frequency Yagi-Uda antenna, stands out by its efficient unidirectional light emission and enhancement. Following a brief introduction to the emerging field of optical nanoantennas, here we review recent theoretical and experimental activities on optical Yagi-Uda nanoantennas, including their design, fabrication, and applications. We also discuss several extensions of the conventional Yagi-Uda antenna design for broadband and tunable operation, for applications in nanophotonic circuits and photovoltaic devices

    Anisotropically Shaped Magnetic/Plasmonic Nanocomposites for Information Encryption and Magnetic-Field-Direction Sensing.

    Get PDF
    Instantaneous control over the orientation of anisotropically shaped plasmonic nanostructures allows for selective excitation of plasmon modes and enables dynamic tuning of the plasmonic properties. Herein we report the synthesis of rod-shaped magnetic/plasmonic core-shell nanocomposite particles and demonstrate the active tuning of their optical property by manipulating their orientation using an external magnetic field. We further design and construct an IR-photoelectric coupling system, which generates an output voltage depending on the extinction property of the measured nanocomposite sample. We employ the device to demonstrate that the nanocomposite particles can serve as units for information encryption when immobilized in a polymer film and additionally when dispersed in solution can be employed as a new type of magnetic-field-direction sensor

    Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    Get PDF
    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices
    • …
    corecore