7,890 research outputs found

    Localisation of mobile nodes in wireless networks with correlated in time measurement noise.

    Get PDF
    Wireless sensor networks are an inherent part of decision making, object tracking and location awareness systems. This work is focused on simultaneous localisation of mobile nodes based on received signal strength indicators (RSSIs) with correlated in time measurement noises. Two approaches to deal with the correlated measurement noises are proposed in the framework of auxiliary particle filtering: with a noise augmented state vector and the second approach implements noise decorrelation. The performance of the two proposed multi model auxiliary particle filters (MM AUX-PFs) is validated over simulated and real RSSIs and high localisation accuracy is demonstrated

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    Parallelized Particle and Gaussian Sum Particle Filters for Large Scale Freeway Traffic Systems

    Get PDF
    Large scale traffic systems require techniques able to: 1) deal with high amounts of data and heterogenous data coming from different types of sensors, 2) provide robustness in the presence of sparse sensor data, 3) incorporate different models that can deal with various traffic regimes, 4) cope with multimodal conditional probability density functions for the states. Often centralized architectures face challenges due to high communication demands. This paper develops new estimation techniques able to cope with these problems of large traffic network systems. These are Parallelized Particle Filters (PPFs) and a Parallelized Gaussian Sum Particle Filter (PGSPF) that are suitable for on-line traffic management. We show how complex probability density functions of the high dimensional trafc state can be decomposed into functions with simpler forms and the whole estimation problem solved in an efcient way. The proposed approach is general, with limited interactions which reduces the computational time and provides high estimation accuracy. The efciency of the PPFs and PGSPFs is evaluated in terms of accuracy, complexity and communication demands and compared with the case where all processing is centralized

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Mathematical problems for complex networks

    Get PDF
    Copyright @ 2012 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is made available through the Brunel Open Access Publishing Fund.Complex networks do exist in our lives. The brain is a neural network. The global economy is a network of national economies. Computer viruses routinely spread through the Internet. Food-webs, ecosystems, and metabolic pathways can be represented by networks. Energy is distributed through transportation networks in living organisms, man-made infrastructures, and other physical systems. Dynamic behaviors of complex networks, such as stability, periodic oscillation, bifurcation, or even chaos, are ubiquitous in the real world and often reconfigurable. Networks have been studied in the context of dynamical systems in a range of disciplines. However, until recently there has been relatively little work that treats dynamics as a function of network structure, where the states of both the nodes and the edges can change, and the topology of the network itself often evolves in time. Some major problems have not been fully investigated, such as the behavior of stability, synchronization and chaos control for complex networks, as well as their applications in, for example, communication and bioinformatics

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Target Tracking in Wireless Sensor Networks

    Get PDF

    Conditional Posterior Cramer-Rao Lower Bound and Distributed Target Tracking in Sensor Networks

    Get PDF
    Sequential Bayesian estimation is the process of recursively estimating the state of a dynamical system observed in the presence of noise. Posterior Cramer-Rao lower bound (PCRLB) sets a performance limit onany Bayesian estimator for the given dynamical system. The PCRLBdoes not fully utilize the existing measurement information to give anindication of the mean squared error (MSE) of the estimator in the future. In many practical applications, we are more concerned with the value of the bound in the future than in the past. PCRLB is an offline bound, because it averages out the very useful measurement information, which makes it an off-line bound determined only by the system dynamical model, system measurement model and the prior knowledge of the system state at the initial time. This dissertation studies the sequential Bayesian estimation problem and then introduces the notation of conditional PCRLB, which utilizes the existing measurement information up to the current time, and sets the limit on the MSE of any Bayesian estimators at the next time step. This work has two emphases: firstly, we give the mathematically rigorous formulation of the conditional PCRLB as well as the approximate recursive version of conditional PCRLB for nonlinear, possibly non-Gaussian dynamical systems. Secondly, we apply particle filter techniques to compute the numerical values of the conditional PCRLB approximately, which overcomes the integration problems introduced by nonlinear/non-Gaussian systems. Further, we explore several possible applications of the proposed bound to find algorithms that provide improved performance. The primary problem of interest is the sensor selection problem for target tracking in sensor networks. Comparisons are also made between the performance of sensor selection algorithm based on the proposed bound and the existing approaches, such as information driven, nearest neighbor, and PCRLB with renewal strategy, to demonstrate the superior performances of the proposed approach. This dissertation also presents a bandwidth-efficient algorithm for tracking a target in sensor networks using distributed particle filters. This algorithm distributes the computation burden for target tracking over the sensor nodes. Each sensor node transmits a compressed local tracking result to the fusion center by a modified expectationmaximization (EM) algorithm to save the communication bandwidth. The fusion center incorporates the compressed tracking results to give the estimate of the target state. Finally, the target tracking problem in heterogeneous sensor networks is investigated extensively. Extended Kalman Filter and particle filter techniques are implemented and compared for tracking a maneuvering
    corecore