346 research outputs found

    A matrix product algorithm for stochastic dynamics on networks, applied to non-equilibrium Glauber dynamics

    Full text link
    We introduce and apply a novel efficient method for the precise simulation of stochastic dynamical processes on locally tree-like graphs. Networks with cycles are treated in the framework of the cavity method. Such models correspond, for example, to spin-glass systems, Boolean networks, neural networks, or other technological, biological, and social networks. Building upon ideas from quantum many-body theory, the new approach is based on a matrix product approximation of the so-called edge messages -- conditional probabilities of vertex variable trajectories. Computation costs and accuracy can be tuned by controlling the matrix dimensions of the matrix product edge messages (MPEM) in truncations. In contrast to Monte Carlo simulations, the algorithm has a better error scaling and works for both, single instances as well as the thermodynamic limit. We employ it to examine prototypical non-equilibrium Glauber dynamics in the kinetic Ising model. Because of the absence of cancellation effects, observables with small expectation values can be evaluated accurately, allowing for the study of decay processes and temporal correlations.Comment: 5 pages, 3 figures; minor improvements, published versio

    A Distributed and Incremental SVD Algorithm for Agglomerative Data Analysis on Large Networks

    Full text link
    In this paper, we show that the SVD of a matrix can be constructed efficiently in a hierarchical approach. Our algorithm is proven to recover the singular values and left singular vectors if the rank of the input matrix AA is known. Further, the hierarchical algorithm can be used to recover the dd largest singular values and left singular vectors with bounded error. We also show that the proposed method is stable with respect to roundoff errors or corruption of the original matrix entries. Numerical experiments validate the proposed algorithms and parallel cost analysis

    Online Matrix Completion Through Nuclear Norm Regularisation

    Get PDF
    It is the main goal of this paper to propose a novel method to perform matrix completion on-line. Motivated by a wide variety of applications, ranging from the design of recommender systems to sensor network localization through seismic data reconstruction, we consider the matrix completion problem when entries of the matrix of interest are observed gradually. Precisely, we place ourselves in the situation where the predictive rule should be refined incrementally, rather than recomputed from scratch each time the sample of observed entries increases. The extension of existing matrix completion methods to the sequential prediction context is indeed a major issue in the Big Data era, and yet little addressed in the literature. The algorithm promoted in this article builds upon the Soft Impute approach introduced in Mazumder et al. (2010). The major novelty essentially arises from the use of a randomised technique for both computing and updating the Singular Value Decomposition (SVD) involved in the algorithm. Though of disarming simplicity, the method proposed turns out to be very efficient, while requiring reduced computations. Several numerical experiments based on real datasets illustrating its performance are displayed, together with preliminary results giving it a theoretical basis.Comment: Corrected a typo in the affiliatio

    An Efficient, Memory-Saving Approach for the Loewner Framework

    Get PDF
    The Loewner framework is one of the most successful data-driven model order reduction techniques. If N is the cardinality of a given data set, the so-called Loewner and shifted Loewner matrices [Formula: see text] and [Formula: see text] can be defined by solely relying on information encoded in the considered data set and they play a crucial role in the computation of the sought rational model approximation.In particular, the singular value decomposition of a linear combination of [Formula: see text] and [Formula: see text] provides the tools needed to construct accurate models which fulfill important approximation properties with respect to the original data set. However, for highly-sampled data sets, the dense nature of [Formula: see text] and [Formula: see text] leads to numerical difficulties, namely the failure to allocate these matrices in certain memory-limited environments or excessive computational costs. Even though they do not possess any sparsity pattern, the Loewner and shifted Loewner matrices are extremely structured and, in this paper, we show how to fully exploit their Cauchy-like structure to reduce the cost of computing accurate rational models while avoiding the explicit allocation of [Formula: see text] and [Formula: see text] . In particular, the use of the hierarchically semiseparable format allows us to remarkably lower both the computational cost and the memory requirements of the Loewner framework obtaining a novel scheme whose costs scale with [Formula: see text]

    A literature survey of low-rank tensor approximation techniques

    Full text link
    During the last years, low-rank tensor approximation has been established as a new tool in scientific computing to address large-scale linear and multilinear algebra problems, which would be intractable by classical techniques. This survey attempts to give a literature overview of current developments in this area, with an emphasis on function-related tensors
    • …
    corecore