882 research outputs found

    Visual Comfort Assessment for Stereoscopic Image Retargeting

    Full text link
    In recent years, visual comfort assessment (VCA) for 3D/stereoscopic content has aroused extensive attention. However, much less work has been done on the perceptual evaluation of stereoscopic image retargeting. In this paper, we first build a Stereoscopic Image Retargeting Database (SIRD), which contains source images and retargeted images produced by four typical stereoscopic retargeting methods. Then, the subjective experiment is conducted to assess four aspects of visual distortion, i.e. visual comfort, image quality, depth quality and the overall quality. Furthermore, we propose a Visual Comfort Assessment metric for Stereoscopic Image Retargeting (VCA-SIR). Based on the characteristics of stereoscopic retargeted images, the proposed model introduces novel features like disparity range, boundary disparity as well as disparity intensity distribution into the assessment model. Experimental results demonstrate that VCA-SIR can achieve high consistency with subjective perception

    Saliency detection for stereoscopic images

    Get PDF
    International audienceSaliency detection techniques have been widely used in various 2D multimedia processing applications. Currently, the emerging applications of stereoscopic display require new saliency detection models for stereoscopic images. Different from saliency detection for 2D images, depth features have to be taken into account in saliency detection for stereoscopic images. In this paper, we propose a new stereoscopic saliency detection framework based on the feature contrast of color, intensity, texture, and depth. Four types of features including color, luminance, texture, and depth are extracted from DC-T coefficients to represent the energy for image patches. A Gaussian model of the spatial distance between image patches is adopted for the consideration of local and global contrast calculation. A new fusion method is designed to combine the feature maps for computing the final saliency map for stereoscopic images. Experimental results on a recent eye tracking database show the superior performance of the proposed method over other existing ones in saliency estimation for 3D images

    An Iterative Co-Saliency Framework for RGBD Images

    Full text link
    As a newly emerging and significant topic in computer vision community, co-saliency detection aims at discovering the common salient objects in multiple related images. The existing methods often generate the co-saliency map through a direct forward pipeline which is based on the designed cues or initialization, but lack the refinement-cycle scheme. Moreover, they mainly focus on RGB image and ignore the depth information for RGBD images. In this paper, we propose an iterative RGBD co-saliency framework, which utilizes the existing single saliency maps as the initialization, and generates the final RGBD cosaliency map by using a refinement-cycle model. Three schemes are employed in the proposed RGBD co-saliency framework, which include the addition scheme, deletion scheme, and iteration scheme. The addition scheme is used to highlight the salient regions based on intra-image depth propagation and saliency propagation, while the deletion scheme filters the saliency regions and removes the non-common salient regions based on interimage constraint. The iteration scheme is proposed to obtain more homogeneous and consistent co-saliency map. Furthermore, a novel descriptor, named depth shape prior, is proposed in the addition scheme to introduce the depth information to enhance identification of co-salient objects. The proposed method can effectively exploit any existing 2D saliency model to work well in RGBD co-saliency scenarios. The experiments on two RGBD cosaliency datasets demonstrate the effectiveness of our proposed framework.Comment: 13 pages, 13 figures, Accepted by IEEE Transactions on Cybernetics 2017. Project URL: https://rmcong.github.io/proj_RGBD_cosal_tcyb.htm

    Stereoscopic image quality assessment method based on binocular combination saliency model

    Get PDF
    The objective quality assessment of stereoscopic images plays an important role in three-dimensional (3D) technologies. In this paper, we propose an effective method to evaluate the quality of stereoscopic images that are afflicted by symmetric distortions. The major technical contribution of this paper is that the binocular combination behaviours and human 3D visual saliency characteristics are both considered. In particular, a new 3D saliency map is developed, which not only greatly reduces the computational complexity by avoiding calculation of the depth information, but also assigns appropriate weights to the image contents. Experimental results indicate that the proposed metric not only significantly outperforms conventional 2D quality metrics, but also achieves higher performance than the existing 3D quality assessment models

    Quality assessment metric of stereo images considering cyclopean integration and visual saliency

    Get PDF
    In recent years, there has been great progress in the wider use of three-dimensional (3D) technologies. With increasing sources of 3D content, a useful tool is needed to evaluate the perceived quality of the 3D videos/images. This paper puts forward a framework to evaluate the quality of stereoscopic images contaminated by possible symmetric or asymmetric distortions. Human visual system (HVS) studies reveal that binocular combination models and visual saliency are the two key factors for the stereoscopic image quality assessment (SIQA) metric. Therefore inspired by such findings in HVS, this paper proposes a novel saliency map in SIQA metric for the cyclopean image called “cyclopean saliency”, which avoids complex calculations and produces good results in detecting saliency regions. Moreover, experimental results show that our metric significantly outperforms conventional 2D quality metrics and yields higher correlations with human subjective judgment than the state-of-art SIQA metrics. 3D saliency performance is also compared with “cyclopean saliency” in SIQA. It is noticed that the proposed metric is applicable to both symmetric and asymmetric distortions. It can thus be concluded that the proposed SIQA metric can provide an effective evaluation tool to assess stereoscopic image quality
    corecore