3 research outputs found

    Topology Design of Extended Torus and Ring for Low Latency Network-on-Chip Architecture

    Get PDF
    In essence, Network-on-Chip (NoC) also known as on-chip interconnection network has been proposed as a design solution to System-on-Chip (SoC). The routing algorithm, topology and switching technique are significant because of the most influential effect on the overall performance of Network-on-Chip (NoC). Designing of large scale topology alongside the support of deadlock free, low latency, high throughput and low power consumption is notably challenging in particular with expanding network size. This paper proposed an 8x8 XX-Torus and 64 nodes XX-Ring topology schemes for Network-on-Chip to minimize the latency by decrease the node diameter from the source node to destination node. Correspondingly, we compare in differences on the performance of mesh, full-mesh, torus and ring topologies with XX-Torus and XX-Ring topologies in term of latency. Results show that XX-Ring outperforms the conventional topologies in term of latency. XX-Ring decreases the average latency by 106.28%, 14.80%, 6.7 1%, 1.73%, 442.24% over the mesh, fully-mesh, torus, XX-torus, and Ring topologies

    Software-based and regionally-oriented traffic management in Networks-on-Chip

    Get PDF
    Since the introduction of chip-multiprocessor systems, the number of integrated cores has been steady growing and workload applications have been adapted to exploit the increasing parallelism. This changed the importance of efficient on-chip communication significantly and the infrastructure has to keep step with these new requirements. The work at hand makes significant contributions to the state-of-the-art of the latest generation of such solutions, called Networks-on-Chip, to improve the performance, reliability, and flexible management of these on-chip infrastructures
    corecore