233 research outputs found

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    INSENS: Intrusion-tolerant routing for wireless sensor networks

    Get PDF
    This paper describes an INtrusion-tolerant routing protocol for wireless SEnsor NetworkS (INSENS). INSENS securely and efficiently constructs tree-structured routing for wireless sensor networks (WSNs). The key objective of an INSENS network is to tolerate damage caused by an intruder who has compromised deployed sensor nodes and is intent on injecting, modifying, or blocking packets. To limit or localize the damage caused by such an intruder, INSENS incorporates distributed lightweight security mechanisms, including efficient one-way hash chains and nested keyed message authentication codes that defend against wormhole attacks, as well as multipath routing. Adapting to WSN characteristics, the design of INSENS also pushes complexity away from resource-poor sensor nodes towards resource-rich base stations. An enhanced single-phase version of INSENS scales to large networks, integrates bidirectional verification to defend against rushing attacks, accommodates multipath routing to multiple base stations, enables secure joining/leaving, and incorporates a novel pairwise key setup scheme based on transitory global keys that is more resilient than LEAP. Simulation results are presented to demonstrate and assess the tolerance of INSENS to various attacks launched by an adversary. A prototype implementation of INSENS over a network of MICA2 motes is presented to evaluate the cost incurred

    Routing Security Issues in Wireless Sensor Networks: Attacks and Defenses

    Get PDF
    Wireless Sensor Networks (WSNs) are rapidly emerging as an important new area in wireless and mobile computing research. Applications of WSNs are numerous and growing, and range from indoor deployment scenarios in the home and office to outdoor deployment scenarios in adversary's territory in a tactical battleground (Akyildiz et al., 2002). For military environment, dispersal of WSNs into an adversary's territory enables the detection and tracking of enemy soldiers and vehicles. For home/office environments, indoor sensor networks offer the ability to monitor the health of the elderly and to detect intruders via a wireless home security system. In each of these scenarios, lives and livelihoods may depend on the timeliness and correctness of the sensor data obtained from dispersed sensor nodes. As a result, such WSNs must be secured to prevent an intruder from obstructing the delivery of correct sensor data and from forging sensor data. To address the latter problem, end-to-end data integrity checksums and post-processing of senor data can be used to identify forged sensor data (Estrin et al., 1999; Hu et al., 2003a; Ye et al., 2004). The focus of this chapter is on routing security in WSNs. Most of the currently existing routing protocols for WSNs make an optimization on the limited capabilities of the nodes and the application-specific nature of the network, but do not any the security aspects of the protocols. Although these protocols have not been designed with security as a goal, it is extremely important to analyze their security properties. When the defender has the liabilities of insecure wireless communication, limited node capabilities, and possible insider threats, and the adversaries can use powerful laptops with high energy and long range communication to attack the network, designing a secure routing protocol for WSNs is obviously a non-trivial task.Comment: 32 pages, 5 figures, 4 tables 4. arXiv admin note: substantial text overlap with arXiv:1011.152

    Collaborative Profile Assessment to Secure MANET by DDOS Attack

    Get PDF
    In the Mobile Ad-hoc Network, nodes bind together in the centralised authority's absence because reliability is one of the main challenges. The MANETS protective architecture provides some consequential problems due to the specific features of MANETS. The DDoS attack in the network is not quickly detectable. A management infrastructure that guarantees extensive security and the required network performance from attacks must be developed to overcome the barriers. Direct methods cannot be found successfully in mobile ad hoc networks in which network topology differs animatedly. Different DDoS security systems boost the network's output in front of an attacker to deactivate mismanagement, like NTRS. In this study, the Distributed Profile Evaluation Mechanism (DPEAP) DDoS Attack Effect in the Network proposes that compromise packets tossed out of the network beyond the network's capacity. The NTRS was a modern methodology in the study, and the DPEAP suggested is a new technique. The DPEAP identifies the attacker's behaviour by matching an attacker's profile with the ordinary nodes on the network, provided that the Node Profile is regular in the foaming of the proper network data delivery. The DPEAP then declare that the attacker's network has no hazard. In contrast with NTRS in MANET, the DPEAP method is stable and efficient
    • …
    corecore