388 research outputs found

    Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems

    Get PDF
    Millimeter wave signals and large antenna arrays are considered enabling technologies for future 5G networks. While their benefits for achieving high-data rate communications are well-known, their potential advantages for accurate positioning are largely undiscovered. We derive the Cram\'{e}r-Rao bound (CRB) on position and rotation angle estimation uncertainty from millimeter wave signals from a single transmitter, in the presence of scatterers. We also present a novel two-stage algorithm for position and rotation angle estimation that attains the CRB for average to high signal-to-noise ratio. The algorithm is based on multiple measurement vectors matching pursuit for coarse estimation, followed by a refinement stage based on the space-alternating generalized expectation maximization algorithm. We find that accurate position and rotation angle estimation is possible using signals from a single transmitter, in either line-of- sight, non-line-of-sight, or obstructed-line-of-sight conditions.Comment: The manuscript has been revised, and increased from 27 to 31 pages. Also, Fig.2, Fig. 10 and Table I are adde

    A robust compressive sensing based technique for reconstruction of sparse radar scenes

    Get PDF
    Cataloged from PDF version of article.Pulse-Doppler radar has been successfully applied to surveillance and tracking of both moving and stationary targets. For efficient processing of radar returns, delay–Doppler plane is discretized and FFT techniques are employed to compute matched filter output on this discrete grid. However, for targets whose delay–Doppler values do not coincide with the computation grid, the detection performance degrades considerably. Especially for detecting strong and closely spaced targets this causes miss detections and false alarms. This phenomena is known as the off-grid problem. Although compressive sensing based techniques provide sparse and high resolution results at sub-Nyquist sampling rates, straightforward application of these techniques is significantly more sensitive to the off-grid problem. Here a novel parameter perturbation based sparse reconstruction technique is proposed for robust delay– Doppler radar processing even under the off-grid case. Although the perturbation idea is general and can be implemented in association with other greedy techniques, presently it is used within an orthogonal matching pursuit (OMP) framework. In the proposed technique, the selected dictionary parameters are perturbed towards directions to decrease the orthogonal residual norm. The obtained results show that accurate and sparse reconstructions can be obtained for off-grid multi target cases. A new performance metric based on Kullback–Leibler Divergence (KLD) is proposed to better characterize the error between actual and reconstructed parameter spaces. Increased performance with lower reconstruction errors are obtained for all the tested performance criteria for the proposed technique compared to conventional OMP and 1 minimization techniques. © 2013 Elsevier Inc. All rights reserve

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link
    • …
    corecore