7 research outputs found

    Robotics and Artificial Intelligence in Gastrointestinal Endoscopy: Updated Review of the Literature and State of the Art

    Get PDF
    Abstract Purpose of Review Gastrointestinal endoscopy includes a wide range of procedures that has dramatically evolved over the past decades. Robotic endoscopy and artificial intelligence are expanding the horizons of traditional techniques and will play a key role in clinical practice in the near future. Understanding the main available devices and procedures is a key unmet need. This review aims to assess the current and future applications of the most recently developed endoscopy robots. Recent Findings Even though a few devices have gained approval for clinical application, the majority of robotic and artificial intelligence systems are yet to become an integral part of the current endoscopic instrumentarium. Some of the innovative endoscopic devices and artificial intelligence systems are dedicated to complex procedures such as endoscopic submucosal dissection, whereas others aim to improve diagnostic techniques such as colonoscopy. Summary A review on flexible endoscopic robotics and artificial intelligence systems is presented here, showing the m3ost recently approved and experimental devices and artificial intelligence systems for diagnosis and robotic endoscopy

    Flexible Over-the-Tube Device for Soft-Tethered Colonoscopy

    Get PDF
    Soft-tethered colonoscopes were proposed for safe and effective colon navigation, yet the deployment of front-wheel actuated colonoscopes is hindered by contact interactions with the lumen along the entire soft tether. To mitigate this problem, this study introduces an over-the-tube flexible device aimed to assist colonoscope deployment. The device is composed of three pneumatically driven actuators devised to repeatedly perform a two-phase operation: (phase I) to advance along the tether up to a working position relatively close to the colonoscope’s tip; (phase II) to clamp and drag the tether forward, upon anchoring to colonic wall. This way, a distal tether portion is freed, thus reducing the aforementioned limitations and fostering effective front-wheel navigation. Considering anatomical/clinical constraints and a 2N resistive force, we designed and prototyped a system with an inner and outer diameter of 12 and 26 mm, respectively, a length of 91 mm, and operating pressures equal to 150, 50 and 15 kPa for clamping the tether, elongating the device and safely anchoring to the colonic wall, respectively. The device was successfully tested, achieving locomotion speeds up to 4.9 and 2.2 mm/s, and tether freeing rates up to 2.9 and 1.8 mm/s, in tabletop conditions and in a colon phantom, respectively

    Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook

    Get PDF
    Since the emergence of soft robotics around two decades ago, research interest in the field has escalated at a pace. It is fuelled by the industry's appreciation of the wide range of soft materials available that can be used to create highly dexterous robots with adaptability characteristics far beyond that which can be achieved with rigid component devices. The ability, inherent in soft robots, to compliantly adapt to the environment, has significantly sparked interest from the surgical robotics community. This article provides an in-depth overview of recent progress and outlines the remaining challenges in the development of soft robotics for minimally invasive surgery

    DEVELOPMENT OF A DUPLEX CYLINDRICAL FLEXIBLE ROBOT : NEJIRI : REALIZATION OF TURNING AND TRANSLATIONAL MOTION BY USING TWISTING MOTION

    Get PDF
    In this study, we propose a novel twisting mechanism for a cylindrical soft robot to move. The proposed mechanism has a duplex structure comprising a silicone rubber hose and a flexible shaft. Each side of the robot has a geared motor, and the robot shortens and lengthens by rotating each motor. When rotating one motor, the shape of the robot generates a spiral wave, and its length shortens. Then, by rotating the other motor to loosen the spiral, the shape of the robot returns to a natural shape, and the center of gravity moves as well. By simply repeating these motions, locomotive behavior is realized, and the robot moves toward the desired direction. To demonstrate the effectiveness of the proposed mechanism, we developed a prototype. Moreover, to confirm its mobility, experiments were conducted. According to the results, we confirmed that the desired turning and translational motion were realized, and the robot was able to move toward the desired direction on a flat horizontal plane and through a pipe

    A Bioinspired Fluid-Filled Soft Linear Actuator

    Get PDF
    In bioinspired soft robotics, very few studies have focused on fluidic transmissions and there is an urgent need for translating fluidic concepts into realizable fluidic components to be applied in different fields. Nature has often offered an inspiring reference to design new efficient devices. Inspired by the working principle of a marine worm, the sipunculid species Phascolosoma stephensoni (Sipunculidae, Annelida), a soft linear fluidic actuator is here presented. The natural hydrostatic skeleton combined with muscle activity enables these organisms to protrude a part of their body to explore the surrounding. Looking at the hydrostatic skeleton and protrusion mechanism of sipunculids, our solution is based on a twofold fluidic component, exploiting the advantages of both pneumatic and hydraulic actuations and providing a novel fluidic transmission mechanism. The inflation of a soft pneumatic chamber is associated with the stretch of an inner hydraulic chamber due to the incompressibility of the liquid. Actuator stretch and forces have been characterized to determine system performance. In addition, an analytical model has been derived to relate the stretch ability to the inlet pressure. Three different sizes of prototypes were tested to evaluate the suitability of the proposed design for miniaturization. The proposed actuator features a strain equal to 40–50% of its initial length—depending on size—and output forces up to 18 N in the largest prototypes. The proposed bioinspired actuator expands the design of fluidic actuators and can pave the way for new approaches in soft robotics with potential application in the medical field
    corecore