1,028 research outputs found

    Optimal Orchestration of Virtual Network Functions

    Full text link
    -The emergence of Network Functions Virtualization (NFV) is bringing a set of novel algorithmic challenges in the operation of communication networks. NFV introduces volatility in the management of network functions, which can be dynamically orchestrated, i.e., placed, resized, etc. Virtual Network Functions (VNFs) can belong to VNF chains, where nodes in a chain can serve multiple demands coming from the network edges. In this paper, we formally define the VNF placement and routing (VNF-PR) problem, proposing a versatile linear programming formulation that is able to accommodate specific features and constraints of NFV infrastructures, and that is substantially different from existing virtual network embedding formulations in the state of the art. We also design a math-heuristic able to scale with multiple objectives and large instances. By extensive simulations, we draw conclusions on the trade-off achievable between classical traffic engineering (TE) and NFV infrastructure efficiency goals, evaluating both Internet access and Virtual Private Network (VPN) demands. We do also quantitatively compare the performance of our VNF-PR heuristic with the classical Virtual Network Embedding (VNE) approach proposed for NFV orchestration, showing the computational differences, and how our approach can provide a more stable and closer-to-optimum solution

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    Self-Modeling Based Diagnosis of Software-Defined Networks

    Full text link
    Networks built using SDN (Software-Defined Networks) and NFV (Network Functions Virtualization) approaches are expected to face several challenges such as scalability, robustness and resiliency. In this paper, we propose a self-modeling based diagnosis to enable resilient networks in the context of SDN and NFV. We focus on solving two major problems: On the one hand, we lack today of a model or template that describes the managed elements in the context of SDN and NFV. On the other hand, the highly dynamic networks enabled by the softwarisation require the generation at runtime of a diagnosis model from which the root causes can be identified. In this paper, we propose finer granular templates that do not only model network nodes but also their sub-components for a more detailed diagnosis suitable in the SDN and NFV context. In addition, we specify and validate a self-modeling based diagnosis using Bayesian Networks. This approach differs from the state of the art in the discovery of network and service dependencies at run-time and the building of the diagnosis model of any SDN infrastructure using our templates

    New concepts for traffic, resource and mobility management in software-defined mobile networks

    Get PDF
    The evolution of mobile telecommunication networks is accompanied by new demands for the performance, portability, elasticity, and energy efficiency of network functions. Network Function Virtualization (NFV), Software Defined Networking (SDN), and cloud service technologies are claimed to be able to provide most of the capabilities. However, great leap forward will only be achieved if resource, traffic, and mobility management methods of mobile network services can efficiently utilize these technologies. This paper conceptualizes the future requirements of mobile networks and proposes new concepts and solutions in the form of Software-Defined Mobile Networks (SDMN) leveraging SDN, NFV and cloud technologies. We evaluate the proposed solutions through testbed implementations and simulations. The results reveal that our proposed SDMN enhancements supports heterogeneity in wireless networks with performance improvements through programmable interfaces and centralized control

    IT and Multi-layer Online Resource Allocation and Offline Planning in Metropolitan Networks

    Get PDF
    Metropolitan networks are undergoing a major technological breakthrough leveraging the capabilities of software-defined networking (SDN) and network function virtualization (NFV). NFV permits the deployment of virtualized network functions (VNFs) on commodity hardware appliances which can be combined with SDN flexibility and programmability of the network infrastructure. SDN/NFV-enabled networks require decision-making in two time scales: short-term online resource allocation and mid-to-long term offline planning. In this paper, we first tackle the dimensioning of SDN/NFV-enabled metropolitan networks paying special attention to the role that latency plays in the capacity planning. We focus on a specific use-case: the metropolitan network that covers the Murcia - Alicante Spanish regions. Then, we propose a latency-aware multilayer service-chain allocation (LA-ML-SCA) algorithm to explore a range of maximum latency requirements and their impact on the resources for dimensioning the metropolitan network. We observe that design costs increase for low latency requirements as more data center facilities need to be spread to get closer to the network edge, reducing the economies of scale on the IT infrastructure. Subsequently, we review our recent joint computation of multi-site VNF placement and multilayer resource allocation in the deployment of a network service in a metro network. Specifically, a set of subroutines contained in LA-ML-SCA are experimentally validated in a network optimization-as-a-service architecture that assists an Open-Source MANO instance, virtual infrastructure managers and WAN controllers in a metro network test-bed.Grant numbers : Go2Edge - Engineering Future Edge Computing Networks, Systems and Services.@ 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
    • 

    corecore