228,743 research outputs found

    Automatic Stance Detection Using End-to-End Memory Networks

    Full text link
    We present a novel end-to-end memory network for stance detection, which jointly (i) predicts whether a document agrees, disagrees, discusses or is unrelated with respect to a given target claim, and also (ii) extracts snippets of evidence for that prediction. The network operates at the paragraph level and integrates convolutional and recurrent neural networks, as well as a similarity matrix as part of the overall architecture. The experimental evaluation on the Fake News Challenge dataset shows state-of-the-art performance.Comment: NAACL-2018; Stance detection; Fact-Checking; Veracity; Memory networks; Neural Networks; Distributed Representation

    SurfNet: Generating 3D shape surfaces using deep residual networks

    Full text link
    3D shape models are naturally parameterized using vertices and faces, \ie, composed of polygons forming a surface. However, current 3D learning paradigms for predictive and generative tasks using convolutional neural networks focus on a voxelized representation of the object. Lifting convolution operators from the traditional 2D to 3D results in high computational overhead with little additional benefit as most of the geometry information is contained on the surface boundary. Here we study the problem of directly generating the 3D shape surface of rigid and non-rigid shapes using deep convolutional neural networks. We develop a procedure to create consistent `geometry images' representing the shape surface of a category of 3D objects. We then use this consistent representation for category-specific shape surface generation from a parametric representation or an image by developing novel extensions of deep residual networks for the task of geometry image generation. Our experiments indicate that our network learns a meaningful representation of shape surfaces allowing it to interpolate between shape orientations and poses, invent new shape surfaces and reconstruct 3D shape surfaces from previously unseen images.Comment: CVPR 2017 pape

    Every Local Minimum Value is the Global Minimum Value of Induced Model in Non-convex Machine Learning

    Full text link
    For nonconvex optimization in machine learning, this article proves that every local minimum achieves the globally optimal value of the perturbable gradient basis model at any differentiable point. As a result, nonconvex machine learning is theoretically as supported as convex machine learning with a handcrafted basis in terms of the loss at differentiable local minima, except in the case when a preference is given to the handcrafted basis over the perturbable gradient basis. The proofs of these results are derived under mild assumptions. Accordingly, the proven results are directly applicable to many machine learning models, including practical deep neural networks, without any modification of practical methods. Furthermore, as special cases of our general results, this article improves or complements several state-of-the-art theoretical results on deep neural networks, deep residual networks, and overparameterized deep neural networks with a unified proof technique and novel geometric insights. A special case of our results also contributes to the theoretical foundation of representation learning.Comment: Neural computation, MIT pres
    • …
    corecore