9 research outputs found

    Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023

    Get PDF
    Dieser Tagungsband enthält die Beiträge des 33. Workshops „Computational Intelligence“ der vom 23.11. – 24.11.2023 in Berlin stattfindet. Die Schwerpunkte sind Methoden, Anwendungen und Tools für ° Fuzzy-Systeme, ° Künstliche Neuronale Netze, ° Evolutionäre Algorithmen und ° Data-Mining-Verfahren sowie der Methodenvergleich anhand von industriellen und Benchmark-Problemen.The workshop proceedings contain the contributions of the 33rd workshop "Computational Intelligence" which will take place from 23.11. - 24.11.2023 in Berlin. The focus is on methods, applications and tools for ° Fuzzy systems, ° Artificial Neural Networks, ° Evolutionary algorithms and ° Data mining methods as well as the comparison of methods on the basis of industrial and benchmark problems

    Next generation flight management systems for manned and unmanned aircraft operations - automated separation assurance and collision avoidance functionalities

    Get PDF
    The demand for improved safety, efficiency and dynamic demand-capacity balancing due to the rapid growth of the aviation sector and the increasing proliferation of Unmanned Aircraft Systems (UAS) in different classes of airspace pose significant challenges to avionics system developers. The design of Next Generation Flight Management Systems (NG-FMS) for manned and unmanned aircraft operations is performed by addressing the challenges identified by various Air Traffic Management (ATM) modernisation programmes and UAS Traffic Management (UTM) system initiatives. In particular, this research focusses on introducing automated Separation Assurance and Collision Avoidance (SA&CA) functionalities (mathematical models) in the NG-FMS. The innovative NG-FMS is also capable of supporting automated negotiation and validation of 4-Dimensional Trajectory (4DT) intents in coordination with novel ground-based Next Generation Air Traffic Management (NG-ATM) systems. One of the key research contributions is the development of a unified method for cooperative and non-cooperative SA&CA, addressing the technical and regulatory challenges of manned and unmanned aircraft coexistence in all classes of airspace. Analytical models are presented and validated to compute the overall avoidance volume in the airspace surrounding a tracked object, supporting automated SA&CA functionalities. The scientific basis of this approach is to assess real-time measurements and associated uncertainties affecting navigation states (of the host aircraft platform), tracking observables (of the static or moving object) and platform dynamics, and translate them to unified range and bearing uncertainty descriptors. The SA&CA unified approach provides an innovative analytical framework to generate high-fidelity dynamic geo-fences suitable for integration in the NG-FMS and in the ATM/UTM/defence decision support tools

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Integrated perception, modeling, and control paradigm for bistatic sonar tracking by autonomous underwater vehicles

    Get PDF
    Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 357-364).In this thesis, a fully autonomous and persistent bistatic anti-submarine warfare (ASW) surveillance solution is developed using the autonomous underwater vehicles (AUVs). The passive receivers are carried by these AUVs, and are physically separated from the cooperative active sources. These sources are assumed to be transmitting both the frequency-modulated (FM) and continuous wave (CW) sonar pulse signals. The thesis then focuses on providing novel methods for the AUVs/receivers to enhance the bistatic sonar tracking performance. Firstly, the surveillance procedure, called the Automated Perception, is developed to automatically abstract the sensed acoustical data from the passive receiver to the track report that represents the situation awareness. The procedure is executed sequentially by two algorithms: (i) the Sonar Signal Processing algorithm - built with a new dual-waveform fusion of the FM and CW signals to achieve reliable stream of contacts for improved tracking; and (ii) the Target Tracking algorithm - implemented by exploiting information and environmental adaptations to optimize tracking performance. Next, a vehicular control strategy, called the Perception-Driven Control, is devised to move the AUV in reaction to the track report provided by the Automated Perception. The thesis develops a new non-myopic and adaptive control for the vehicle. This is achieved by exploiting the predictive information and environmental rewards to optimize the future tracking performance. The formulation eventually leads to a new information-theoretic and environmental-based control. The main challenge of the surveillance solution then rests upon formulating a model that allows tracking performance to be enhanced via adaptive processing in the Automated Perception, and adaptive mobility by the Perception-Driven Control. A Unified Model is formulated in this thesis that amalgamates two models: (i) the Information-Theoretic Model - developed to define the manner at which the FM and CW acoustical, the navigational, and the environmental measurement uncertainties are propagated to the bistatic measurement uncertainties in the contacts; and (ii) the Environmental-Acoustic Model - built to predict the signal-to-noise power ratios (SNRs) of the FM and CW contacts. Explicit relationships are derived in this thesis using information theory to amalgamate these two models. Finally, an Integrated System is developed onboard each AUV that brings together all the above technologies to enhance the bistatic sonar tracking performance. The system is formulated as a closed-loop control system. This formulation provides a new Integrated Perception, Modeling, and Control Paradigm for an autonomous bistatic ASW surveillance solution using AUVs. The system is validated using the simulated data, and the real data collected from the Generic Littoral Interoperable Network Technology (GLINT) 2009 and 2010 experiments. The experiments were conducted jointly with the NATO Undersea Research Centre (NURC).by Raymond Hon Kit Lum.Sc.D
    corecore