276 research outputs found

    Fast compressed domain watermarking of MPEG multiplexed streams

    Get PDF
    In this paper, a new technique for watermarking of MPEG compressed video streams is proposed. The watermarking scheme operates directly in the domain of MPEG multiplexed streams. Perceptual models are used during the embedding process in order to preserve the quality of the video. The watermark is embedded in the compressed domain and is detected without the use of the original video sequence. Experimental evaluation demonstrates that the proposed scheme is able to withstand a variety of attacks. The resulting watermarking system is very fast and reliable, and is suitable for copyright protection and real-time content authentication applications

    Fast watermarking of MPEG-1/2 streams using compressed-domain perceptual embedding and a generalized correlator detector

    Get PDF
    A novel technique is proposed for watermarking of MPEG-1 and MPEG-2 compressed video streams. The proposed scheme is applied directly in the domain of MPEG-1 system streams and MPEG-2 program streams (multiplexed streams). Perceptual models are used during the embedding process in order to avoid degradation of the video quality. The watermark is detected without the use of the original video sequence. A modified correlation-based detector is introduced that applies nonlinear preprocessing before correlation. Experimental evaluation demonstrates that the proposed scheme is able to withstand several common attacks. The resulting watermarking system is very fast and therefore suitable for copyright protection of compressed video

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Copyright Protection for Surveillance System Multimedia Stream with Cellular Automata Watermarking

    Get PDF
    Intelligent Surveillance Systems are attracting extraordinary attention from research and industry. Security and privacy protection are critical issues for public acceptance of security camera networks. Existing approaches, however, only address isolated aspects without considering the integration with established security technologies and the underlying platform. Easy availability of internet, together with relatively inexpensive digital recording and storage peripherals has created an era where duplication, unauthorized use and misdistribution of digital content has become easier. The ease of availability made digital video popular over analog media like film or tape. At the same time it demands a sharp attention regarding the ownership issue. The ownership and integrity can easily be violated using different audio and video editing softwares. To prevent unauthorized use, misappropriation, misrepresentation; authentication of multimedia contents achieved a broad attention in recent days and to achieve secure copyright protection we embedded some information in audio and videos and that audio or video is called copyright protected. Digital watermarking is a technology to embed additional information into the host signal to ensure security and protection of multimedia data. The embedded information can’t be detected by human but some attacks and operations can tamper that information to breach protection. So in order to find a secure technique of copyright protection, we have analyzed different techniques. After having a good understanding of these techniques we have proposed a novel algorithm that generates results with high effectiveness, additionally we can use self-extracted watermark technique to increase the security and automate the process of watermarking. Forensic digital watermarking is a promising tool in the fight against piracy of copyrighted motion imagery content, but to be effective it must be (1) imperceptibly embedded in high-definition motion picture source, (2) reliably retrieved, even from degraded copies as might result from camcorder capture and subsequent very-low-bitrate compression and distribution on the Internet, and (3) secure against unauthorized removal. Audio and video watermarking enables the copyright protection with owner or customer authentication and the detection of media manipulations. The available watermarking technology concentrates on single media like audio or video. But the typical multimedia stream consists of both video and audio data. Our goal is to provide a solution with robust and fragile aspects to guarantee authentication and integrity by using watermarks in combination with content information. We show two solutions for the protection of audio and video data with a combined robust and fragile watermarking approach. The first solution is to insert a time code into the data: We embed a signal as a watermark to detect gaps or changes in the flow of time. The second solution is more complex: We use watermarks to embed information in each media about the content of the other media. In our paper we present the problem of copyright protection and integrity checks for combined video and audio data. Both the solutions depend upon cellular automata, cellular automata are a powerful computation model that provides a simple way to simulate and solve many difficult problems in different fields. The most widely known example of Cellular Automata is the Game-of-Life. Cellular automaton growth is controlled by predefined rule or programs .The rule describes how the cell will interact with its neighborhood. Once the automaton is started it will work on its own according to the rule specified.

    Robust Video Watermarking Scheme Based on Intra-Coding Process in MPEG-2 Style

    Get PDF
    The proposed scheme implemented a semi blind digital watermarking method for video exploiting MPEG-2 standard. The watermark is inserted into selected high frequency coefficients of plain types of discrete cosine transform blocks instead of edge and texture blocks during intra coding process. The selection is essential because the error in such type of blocks is less sensitive to human eyes as compared to other categories of blocks. Therefore, the perceptibility of watermarked video does not degraded sharply. Visual quality is also maintained as motion vectors used for generating the motion compensated images are untouched during the entire watermarking process. Experimental results revealed that the scheme is not only robust to re-compression attack, spatial synchronization attacks like cropping, rotation but also strong to temporal synchronization attacks like frame inserting, deleting, swapping and averaging. The superiority of the anticipated method is obtaining the best sturdiness results contrast to the recently delivered schemes

    Recent Advances in Watermarking for Scalable Video Coding

    Get PDF
    corecore