37,914 research outputs found

    Geometric Expression Invariant 3D Face Recognition using Statistical Discriminant Models

    No full text
    Currently there is no complete face recognition system that is invariant to all facial expressions. Although humans find it easy to identify and recognise faces regardless of changes in illumination, pose and expression, producing a computer system with a similar capability has proved to be particularly di cult. Three dimensional face models are geometric in nature and therefore have the advantage of being invariant to head pose and lighting. However they are still susceptible to facial expressions. This can be seen in the decrease in the recognition results using principal component analysis when expressions are added to a data set. In order to achieve expression-invariant face recognition systems, we have employed a tensor algebra framework to represent 3D face data with facial expressions in a parsimonious space. Face variation factors are organised in particular subject and facial expression modes. We manipulate this using single value decomposition on sub-tensors representing one variation mode. This framework possesses the ability to deal with the shortcomings of PCA in less constrained environments and still preserves the integrity of the 3D data. The results show improved recognition rates for faces and facial expressions, even recognising high intensity expressions that are not in the training datasets. We have determined, experimentally, a set of anatomical landmarks that best describe facial expression e ectively. We found that the best placement of landmarks to distinguish di erent facial expressions are in areas around the prominent features, such as the cheeks and eyebrows. Recognition results using landmark-based face recognition could be improved with better placement. We looked into the possibility of achieving expression-invariant face recognition by reconstructing and manipulating realistic facial expressions. We proposed a tensor-based statistical discriminant analysis method to reconstruct facial expressions and in particular to neutralise facial expressions. The results of the synthesised facial expressions are visually more realistic than facial expressions generated using conventional active shape modelling (ASM). We then used reconstructed neutral faces in the sub-tensor framework for recognition purposes. The recognition results showed slight improvement. Besides biometric recognition, this novel tensor-based synthesis approach could be used in computer games and real-time animation applications

    Development of an Automated Pain Facial Expression Detection System for Sheep (Ovis Aries).

    Get PDF
    The use of technology to optimize the production and management of each individual animal is becoming key to good farming. There is a need for the real-time systematic detection and control of disease in animals in order to limit the impact on animal welfare and food supply. Diseases such as footrot and mastitis cause significant pain in sheep, and so early detection is vital to ensuring effective treatment and preventing the spread across the flock. Facial expression scoring to assess pain in humans and non-humans is now well utilized, and the Sheep Pain Facial Expression Scale (SPFES) is a tool that can reliably detect pain in this species. The SPFES currently requires manual scoring, leaving it open to observer bias, and it is also time-consuming. The ability of a computer to automatically detect and direct a producer as to where assessment and treatment are needed would increase the chances of controlling the spread of disease. It would also aid in the prevention of resistance across the individual, farm, and landscape at both national and international levels. In this paper, we present our framework for an integrated novel system based on techniques originally applied for human facial expression recognition that could be implemented at the farm level. To the authors' knowledge, this is the first time that this technology has been applied to sheep to assess pain
    • …
    corecore