710 research outputs found

    Cooperative control of relay based cellular networks

    Get PDF
    PhDThe increasing popularity of wireless communications and the higher data requirements of new types of service lead to higher demands on wireless networks. Relay based cellular networks have been seen as an effective way to meet users’ increased data rate requirements while still retaining the benefits of a cellular structure. However, maximizing the probability of providing service and spectrum efficiency are still major challenges for network operators and engineers because of the heterogeneous traffic demands, hard-to-predict user movements and complex traffic models. In a mobile network, load balancing is recognised as an efficient way to increase the utilization of limited frequency spectrum at reasonable costs. Cooperative control based on geographic load balancing is employed to provide flexibility for relay based cellular networks and to respond to changes in the environment. According to the potential capability of existing antenna systems, adaptive radio frequency domain control in the physical layer is explored to provide coverage at the right place at the right time. This thesis proposes several effective and efficient approaches to improve spectrum efficiency using network wide optimization to coordinate the coverage offered by different network components according to the antenna models and relay station capability. The approaches include tilting of antenna sectors, changing the power of omni-directional antennas, and changing the assignment of relay stations to different base stations. Experiments show that the proposed approaches offer significant improvements and robustness in heterogeneous traffic scenarios and when the propagation environment changes. The issue of predicting the consequence of cooperative decisions regarding antenna configurations when applied in a realistic environment is described, and a coverage prediction model is proposed. The consequences of applying changes to the antenna configuration on handovers are analysed in detail. The performance evaluations are based on a system level simulator in the context of Mobile WiMAX technology, but the concepts apply more generally

    Joint Multi-Cell Resource Allocation Using Pure Binary-Integer Programming for LTE Uplink

    Full text link
    Due to high system capacity requirement, 3GPP Long Term Evolution (LTE) is likely to adopt frequency reuse factor 1 at the cost of suffering severe inter-cell interference (ICI). One of combating ICI strategies is network cooperation of resource allocation (RA). For LTE uplink RA, requiring all the subcarriers to be allocated adjacently complicates the RA problem greatly. This paper investigates the joint multi-cell RA problem for LTE uplink. We model the uplink RA and ICI mitigation problem using pure binary-integer programming (BIP), with integrative consideration of all users' channel state information (CSI). The advantage of the pure BIP model is that it can be solved by branch-and-bound search (BBS) algorithm or other BIP solving algorithms, rather than resorting to exhaustive search. The system-level simulation results show that it yields 14.83% and 22.13% gains over single-cell optimal RA in average spectrum efficiency and 5th percentile of user throughput, respectively.Comment: Accepted to IEEE Vehicular Technology Conference (VTC Spring), Seoul, Korea, May, 201

    Integrated control platform for converged optical and wireless networks

    Get PDF

    Efficient design of WIMAX/802.16 mesh networks

    Get PDF
    Broadband wireless networks are becoming increasingly popular due to their fast and inexpensive deployment and their capabilities of providing flexible and ubiquitous Internet access. While the majority of existing broadband wireless networks are still exclusively limited to single hop access, it is the ability of these networks to forward data frames over multi-hop wireless routes which enabled them to easily extend the network coverage area. Unfortunately, achieving good multi- hop throughput has been challenging due to several factors, such as lossy wireless links caused by interference from concurrent transmissions, and intra-path interference caused by transmissions on successive hops along a single path. A wireless mesh network WMN consists of a number of stationary wireless mesh routers, forming a wireless backbone. The wireless mesh routers serve as access points (APs) for wireless mobile devices, and some of them also act as gateways to the Internet via high speed wireless links. Several technologies are currently being considered for mesh (multi-hop) networks, including, IEEE 802.11 (both single channel and multi-channel), IEEE 802.16/WiMAX, and next generation cellular networks (LTE). In this work, we focus on the IEEE 802.16. To maximize the network performance of mesh networks (e.g., throughput), it is essential to consider a cross-layer design, exploiting the dependency between protocol layers such as the routing network layer and the scheduling resource allocation MAC layer. Therefore this PhD thesis considers a cross-layer design approach for designing efficient wireless mesh networks; we first develop mathematical models (link-based and path-based) for the problem of joint routing tree construction and link scheduling in WiMAX-based mesh networks with the objective of minimizing the schedule length to satisfy a set of uplink and downlink demands. This is achieved by maximizing the number of concurrent active transmissions in the network by efficiently reusing the spectrum spatially. Second, we exploit the broadcasts nature of the wireless medium and enhance our design models by incorporating opportunistic network coding into the joint routing tree construction and link scheduling problem. Identifying coding-aware routing structures and utilizing the broadcasting feature of the wireless medium play an important role in realizing the achievable gain of network coding. Last, the uprising mobile WiMAX (802.16e amendment) has introduced more difficulties and challenges into the network design problem; thus, ensuring larger connection lifetime and better routing stability become of greater interest for the joint routing and scheduling problem. This is addressed by augmenting the previously designed models. Throughout this thesis, we assume centralized scheduling at the base station (BS) and we develop, for the joint problems, integer linear programming (ILP) models which require the enumeration of all feasible solutions to reach the optimal solution. Given their complexities, we rely on optimization decomposition methods using column generation for solving each model in an efficient way

    Admission control and resource allocation for LTE uplink systems

    Get PDF
    Long Term Evolution (LTE) radio technologies aim not only to increase the capacity of mobile telephone networks, but also to provide high throughput, low latency, an improved end-to-end Quality of Service (QoS) and a simple architecture. The Third Generation Partnership Project (3GPP) has defined Single Carrier FDMA (SC-FDMA) as the access technique for the uplink and Orthogonal Frequency Division Multiple Access (OFDMA) for the downlink. It is well known that scheduling and admission control play an important role for QoS provisioning, and that they are strongly related. Knowing that we can take full advantage of this property we can design an admission control mechanism that uses the design criterion of the scheduling scheme. In this thesis, we developed two new algorithms for handling single-class resource allocation and two algorithms for handling multi-class resource allocation, as well as a new admission control scheme for handling multi-class Grade of Service (GoS) and QoS in uplink LTE systems. We also present a combined solution that uses the resource allocation and the admission control properties to satisfy the GoS and QoS requirements. System performance is evaluated using simulations. Numerical results show that the proposed scheduling algorithms can handle multi-class QoS in LTE uplink systems with a little increase in complexity, and can be used in conjunction with admission control to meet the LTE requirements. In addition, the proposed admission control algorithm gain for the most sensitive traffic can be increased without sacrificing the overall system capacity. At the same time, guaranteeing GoS and maintaining the basic QoS requirements for all the admitted requests

    Access network selection schemes for multiple calls in next generation wireless networks

    Get PDF
    There is an increasing demand for internet services by mobile subscribers over the wireless access networks, with limited radio resources and capacity constraints. A viable solution to this capacity crunch is the deployment of heterogeneous networks. However, in this wireless environment, the choice of the most appropriate Radio Access Technology (RAT) that can Tsustain or meet the quality of service (QoS) requirements of users' applications require careful planning and cost efficient radio resource management methods. Previous research works on access network selection have focused on selecting a suitable RAT for a user's single call request. With the present request for multiple calls over wireless access networks, where each call has different QoS requirements and the available networks exhibit dynamic channel conditions, the choice of a suitable RAT capable of providing the "Always Best Connected" (ABC) experience for the user becomes a challenge. In this thesis, the problem of selecting the suitable RAT that is capable of meeting the QoS requirements for multiple call requests by mobile users in access networks is investigated. In addressing this problem, we proposed the use of Complex PRoprtional ASsesment (COPRAS) and Consensus-based Multi-Attribute Group Decision Making (MAGDM) techniques as novel and viable RAT selection methods for a grouped-multiple call. The performance of the proposed COPRAS multi-attribute decision making approach to RAT selection for a grouped-call has been evaluated through simulations in different network scenarios. The results show that the COPRAS method, which is simple and flexible, is more efficient in the selection of appropriate RAT for group multiple calls. The COPRAS method reduces handoff frequency and is computationally inexpensive when compared with other methods such as the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), Simple Additive Weighting (SAW) and Multiplicative Exponent Weighting (MEW). The application of the proposed consensus-based algorithm in the selection of a suitable RAT for group-multiple calls, comprising of voice, video-streaming, and file-downloading has been intensively investigated. This algorithm aggregates the QoS requirement of the individual application into a collective QoS for the group calls. This new and novel approach to RAT selection for a grouped-call measures and compares the consensus degree of the collective solution and individual solution against a predefined threshold value. Using the methods of coincidence among preferences and coincidence among solutions with a predefined consensus threshold of 0.9, we evaluated the performance of the consensus-based RAT selection scheme through simulations under different network scenarios. The obtained results show that both methods of coincidences have the capability to select the most suitable RAT for a group of multiple calls. However, the method of coincidence among solutions achieves better results in terms of accuracy, it is less complex and the number of iteration before achieving the predefined consensus threshold is reduced. A utility-based RAT selection method for parallel traffic-streaming in an overlapped heterogeneous wireless network has also been developed. The RAT selection method was modeled with constraints on terminal battery power, service cost and network congestion to select a specified number of RATs that optimizes the terminal interface utility. The results obtained show an optimum RAT selection strategy that maximizes the terminal utility and selects the best RAT combinations for user's parallel-streaming for voice, video and file-download

    Cross-Layer Capacity Optimization In OFDMA Systems: WiMAX And LTE

    Get PDF
    Given the broad range of applications supported, high data rate required and low latency promised; dynamic radio resource management is becoming vital for newly emerging air interface technologies such as wireless interoperability for microwave access (Wimax) and long term evolution (lte) adopted by international standards. This thesis considers orthogonal frequency division multiple access (ofdma) system, which has been implemented in both Wimax and lte technologies as their air interface multiple access mechanism. A framework for optimized resource allocation with quality of service (qos) support that aims to balance between service provider\u27s revenue and subscriber\u27s satisfaction is proposed. A cross-layer optimization design for subchannel, for Wimax, and physical resource block (prb), for lte, and power allocations with the objective of maximizing the capacity (in bits/symbol/hz) subject to fairness parameters and qos requirements as constraints is presented. An adaptive modulation and coding (amc)-based cross-layer scheme has also been proposed in this thesis by adopting an amc scheme together with the cross-layer scheme to realize a more practical and viable resource allocation. The optimization does not only consider users channel conditions but also queue status of each user as well as different qos requirements. In the proposed framework, the problem of power allocation is solved analytically while the subchannel/prb allocation is solved using integer programming exhaustive search. The simulation and numerical results obtained in this thesis have shown improved system performance as compared to other optimization schemes known in literature

    Design And Analysis Of Modified-Proportional Fair Scheduler For LTELTE-Advanced

    Get PDF
    Nowadays, Long Term Evolution-Advanced (LTE-Advanced) is well known as a cellular network that can support very high data rates in diverse traffic conditions. One of the key components of Orthogonal Frequency-Division Multiple Access (OFDMA), Radio Resource Management (RRM), is critical in achieving the desired performance by managing key components of both PHY and MAC layers. The technique that can be done to achieve this is through packet scheduling which is the key scheme of RRM for LTE traffic processing whose function is to allocate resources for both frequency and time dimensions. Packet scheduling for LTE-Advanced has been a dynamic research area in recent years, because in evidence, the increasing demands of data services and number of users which is likely to explode the progress of the LTE system traffic. However, the existing scheduling system is increasingly congested with the increasing number of users and requires the new scheduling system to ensure a more efficient data transmission. In LTE system, Round Robin (RR) scheduler has a problem in providing a high data rate to User Equipment’s (UEs). This is because some resources will be wasted because it schedules the resources from/ to UEs while the UEs are suffering from severe deep fading and less than the required threshold. Meanwhile, for Proportional Fair (PF) scheduler, the process of maximizing scheme of data rate could be very unfair and UE that experienced a bad channel quality conditions can be starved. So, the mechanism applied in PF scheduler is to weight the current data rate achievable by a UE by the average rate received by a UE. The main contribution of this study is the design of a new scheduling scheme and its performance is compared with the PF and RR downlink schedulers for LTE by utilizing the LTE Downlink System Level Simulator. The proposed new scheduling algorithm, namely the Modified-PF scheduler, divides a single sub-frame into multiple time slots and allocates the resource block (RB) to the targeted UE in all time slots for each sub-frame based on the instantaneous Channel Quality Indicator (CQI) feedback received from UEs. Besides, the proposed scheduler is also capable to reallocate RB cyclically in turn to target UE within a time slot in order to ensure the process of distributing packet data consistently. The simulation results showed that the Modified-PF scheduler provided the best performance in terms of throughput in the range of up to 90% improvement and almost 40% increment for spectral efficiency with comparable fairness as compared to PF and RR schedulers. Although PF scheduler had the best fairness index, the Modified-PF scheduler provided a better compromise between the throughput in /spectral efficiency and fairness. This showed that the newly proposed scheme improved the LTE output performances while at the same time maintained a minimal required fairness among the UEs

    Spectrum Leasing as an Incentive towards Uplink Macrocell and Femtocell Cooperation

    Full text link
    The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user may act as a relay for macrocell users. In return, each cooperative macrocell user grants the femtocell user a fraction of its superframe. We formulate a coalitional game with macrocell and femtocell users being the players, which can take individual and distributed decisions on whether to cooperate or not, while maximizing a utility function that captures the cooperative gains, in terms of throughput and delay.We show that the network can selforganize into a partition composed of disjoint coalitions which constitutes the recursive core of the game representing a key solution concept for coalition formation games in partition form. Simulation results show that the proposed coalition formation algorithm yields significant gains in terms of average rate per macrocell user, reaching up to 239%, relative to the non-cooperative case. Moreover, the proposed approach shows an improvement in terms of femtocell users' rate of up to 21% when compared to the traditional closed access policy.Comment: 29 pages, 11 figures, accepted at the IEEE JSAC on Femtocell Network
    corecore