311 research outputs found

    A simplified binary artificial fish swarm algorithm for 0–1 quadratic knapsack problems

    Get PDF
    Available online 8 October 2013.This paper proposes a simplified binary version of the artificial fish swarm algorithm (S-bAFSA) for solving 0–1 knapsack problems. This is a combinatorial optimization problem, which arises in many fields of optimization. In S-bAFSA, trial points are created by using crossover and mutation. In order to make the points feasible, a random heuristic drop item procedure is used. The heuristic add item is also implemented to improve the quality of the solutions, and a cyclic reinitialization of the population is carried out to avoid convergence to non-optimal solutions. To enhance the accuracy of the solution, a local search is applied on a predefined number of points. The method is tested on a set of benchmark 0–1 knapsack problems.Fundação para a Ciência e a Tecnologia (FCT

    A Brief Review on Mathematical Tools Applicable to Quantum Computing for Modelling and Optimization Problems in Engineering

    Get PDF
    Since its emergence, quantum computing has enabled a wide spectrum of new possibilities and advantages, including its efficiency in accelerating computational processes exponentially. This has directed much research towards completely novel ways of solving a wide variety of engineering problems, especially through describing quantum versions of many mathematical tools such as Fourier and Laplace transforms, differential equations, systems of linear equations, and optimization techniques, among others. Exploration and development in this direction will revolutionize the world of engineering. In this manuscript, we review the state of the art of these emerging techniques from the perspective of quantum computer development and performance optimization, with a focus on the most common mathematical tools that support engineering applications. This review focuses on the application of these mathematical tools to quantum computer development and performance improvement/optimization. It also identifies the challenges and limitations related to the exploitation of quantum computing and outlines the main opportunities for future contributions. This review aims at offering a valuable reference for researchers in fields of engineering that are likely to turn to quantum computing for solutions. Doi: 10.28991/ESJ-2023-07-01-020 Full Text: PD

    A Binary differential search algorithm for the 0-1 multidimensional knapsack problem

    Get PDF
    The multidimensional knapsack problem (MKP) is known to be NP-hard in operations research and it has a wide range of applications in engineering and management. In this study, we propose a binary differential search method to solve 0-1 MKPs where the stochastic search is guided by a Brownian motion-like random walk. Our proposed method comprises two main operations: discrete solution generation and feasible solution production. Discrete solutions are generated by integrating Brownian motion-like random search with an integer-rounding operation. However, the rounded discrete variables may violate the constraints. Thus, a feasible solution production strategy is used to maintain the feasibility of the rounded discrete variables. To demonstrate the efficiency of our proposed algorithm, we solved various 0-1 MKPs using our proposed algorithm as well as some existing meta-heuristic methods. The numerical results obtained demonstrated that our algorithm performs better than existing meta-heuristic methods. Furthermore, our algorithm has the capacity to solve large-scale 0-1 MKPs

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms
    corecore