2,880 research outputs found

    A Multi-Label Predictor for Identifying the Subcellular Locations of Singleplex and Multiplex Eukaryotic Proteins

    Get PDF
    Subcellular locations of proteins are important functional attributes. An effective and efficient subcellular localization predictor is necessary for rapidly and reliably annotating subcellular locations of proteins. Most of existing subcellular localization methods are only used to deal with single-location proteins. Actually, proteins may simultaneously exist at, or move between, two or more different subcellular locations. To better reflect characteristics of multiplex proteins, it is highly desired to develop new methods for dealing with them. In this paper, a new predictor, called Euk-ECC-mPLoc, by introducing a powerful multi-label learning approach which exploits correlations between subcellular locations and hybridizing gene ontology with dipeptide composition information, has been developed that can be used to deal with systems containing both singleplex and multiplex eukaryotic proteins. It can be utilized to identify eukaryotic proteins among the following 22 locations: (1) acrosome, (2) cell membrane, (3) cell wall, (4) centrosome, (5) chloroplast, (6) cyanelle, (7) cytoplasm, (8) cytoskeleton, (9) endoplasmic reticulum, (10) endosome, (11) extracellular, (12) Golgi apparatus, (13) hydrogenosome, (14) lysosome, (15) melanosome, (16) microsome, (17) mitochondrion, (18) nucleus, (19) peroxisome, (20) spindle pole body, (21) synapse, and (22) vacuole. Experimental results on a stringent benchmark dataset of eukaryotic proteins by jackknife cross validation test show that the average success rate and overall success rate obtained by Euk-ECC-mPLoc were 69.70% and 81.54%, respectively, indicating that our approach is quite promising. Particularly, the success rates achieved by Euk-ECC-mPLoc for small subsets were remarkably improved, indicating that it holds a high potential for simulating the development of the area. As a user-friendly web-server, Euk-ECC-mPLoc is freely accessible to the public at the website http://levis.tongji.edu.cn:8080/bioinfo/Euk-ECC-mPLoc/. We believe that Euk-ECC-mPLoc may become a useful high-throughput tool, or at least play a complementary role to the existing predictors in identifying subcellular locations of eukaryotic proteins

    Protein (Multi-)Location Prediction: Using Location Inter-Dependencies in a Probabilistic Framework

    Full text link
    Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins, assuming that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems have attempted to predict multiple locations of proteins, they typically treat locations as independent or capture inter-dependencies by treating each locations-combination present in the training set as an individual location-class. We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the multiple-location-prediction process, using a collection of Bayesian network classifiers. We evaluate our system on a dataset of single- and multi-localized proteins. Our results, obtained by incorporating inter-dependencies are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without restricting predictions to be based only on location-combinations present in the training set.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    A New Method for Predicting the Subcellular Localization of Eukaryotic Proteins with Both Single and Multiple Sites: Euk-mPLoc 2.0

    Get PDF
    Information of subcellular locations of proteins is important for in-depth studies of cell biology. It is very useful for proteomics, system biology and drug development as well. However, most existing methods for predicting protein subcellular location can only cover 5 to 12 location sites. Also, they are limited to deal with single-location proteins and hence failed to work for multiplex proteins, which can simultaneously exist at, or move between, two or more location sites. Actually, multiplex proteins of this kind usually posses some important biological functions worthy of our special notice. A new predictor called “Euk-mPLoc 2.0” is developed by hybridizing the gene ontology information, functional domain information, and sequential evolutionary information through three different modes of pseudo amino acid composition. It can be used to identify eukaryotic proteins among the following 22 locations: (1) acrosome, (2) cell wall, (3) centriole, (4) chloroplast, (5) cyanelle, (6) cytoplasm, (7) cytoskeleton, (8) endoplasmic reticulum, (9) endosome, (10) extracell, (11) Golgi apparatus, (12) hydrogenosome, (13) lysosome, (14) melanosome, (15) microsome (16) mitochondria, (17) nucleus, (18) peroxisome, (19) plasma membrane, (20) plastid, (21) spindle pole body, and (22) vacuole. Compared with the existing methods for predicting eukaryotic protein subcellular localization, the new predictor is much more powerful and flexible, particularly in dealing with proteins with multiple locations and proteins without available accession numbers. For a newly-constructed stringent benchmark dataset which contains both single- and multiple-location proteins and in which none of proteins has pairwise sequence identity to any other in a same location, the overall jackknife success rate achieved by Euk-mPLoc 2.0 is more than 24% higher than those by any of the existing predictors. As a user-friendly web-server, Euk-mPLoc 2.0 is freely accessible at http://www.csbio.sjtu.edu.cn/bioinf/euk-multi-2/. For a query protein sequence of 400 amino acids, it will take about 15 seconds for the web-server to yield the predicted result; the longer the sequence is, the more time it may usually need. It is anticipated that the novel approach and the powerful predictor as presented in this paper will have a significant impact to Molecular Cell Biology, System Biology, Proteomics, Bioinformatics, and Drug Development

    A Multi-Label Classifier for Predicting the Subcellular Localization of Gram-Negative Bacterial Proteins with Both Single and Multiple Sites

    Get PDF
    Prediction of protein subcellular localization is a challenging problem, particularly when the system concerned contains both singleplex and multiplex proteins. In this paper, by introducing the “multi-label scale” and hybridizing the information of gene ontology with the sequential evolution information, a novel predictor called iLoc-Gneg is developed for predicting the subcellular localization of Gram-positive bacterial proteins with both single-location and multiple-location sites. For facilitating comparison, the same stringent benchmark dataset used to estimate the accuracy of Gneg-mPLoc was adopted to demonstrate the power of iLoc-Gneg. The dataset contains 1,392 Gram-negative bacterial proteins classified into the following eight locations: (1) cytoplasm, (2) extracellular, (3) fimbrium, (4) flagellum, (5) inner membrane, (6) nucleoid, (7) outer membrane, and (8) periplasm. Of the 1,392 proteins, 1,328 are each with only one subcellular location and the other 64 are each with two subcellular locations, but none of the proteins included has pairwise sequence identity to any other in a same subset (subcellular location). It was observed that the overall success rate by jackknife test on such a stringent benchmark dataset by iLoc-Gneg was over 91%, which is about 6% higher than that by Gneg-mPLoc. As a user-friendly web-server, iLoc-Gneg is freely accessible to the public at http://icpr.jci.edu.cn/bioinfo/iLoc-Gneg. Meanwhile, a step-by-step guide is provided on how to use the web-server to get the desired results. Furthermore, for the user's convenience, the iLoc-Gneg web-server also has the function to accept the batch job submission, which is not available in the existing version of Gneg-mPLoc web-server. It is anticipated that iLoc-Gneg may become a useful high throughput tool for Molecular Cell Biology, Proteomics, System Biology, and Drug Development

    Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence

    Get PDF
    BACKGROUND: Knowing the submitochondria localization of a mitochondria protein is an important step to understand its function. We develop a method which is based on an extended version of pseudo-amino acid composition to predict the protein localization within mitochondria. This work goes one step further than predicting protein subcellular location. We also try to predict the membrane protein type for mitochondrial inner membrane proteins. RESULTS: By using leave-one-out cross validation, the prediction accuracy is 85.5% for inner membrane, 94.5% for matrix and 51.2% for outer membrane. The overall prediction accuracy for submitochondria location prediction is 85.2%. For proteins predicted to localize at inner membrane, the accuracy is 94.6% for membrane protein type prediction. CONCLUSION: Our method is an effective method for predicting protein submitochondria location. But even with our method or the methods at subcellular level, the prediction of protein submitochondria location is still a challenging problem. The online service SubMito is now available at

    Esub8: A novel tool to predict protein subcellular localizations in eukaryotic organisms

    Get PDF
    BACKGROUND: Subcellular localization of a new protein sequence is very important and fruitful for understanding its function. As the number of new genomes has dramatically increased over recent years, a reliable and efficient system to predict protein subcellular location is urgently needed. RESULTS: Esub8 was developed to predict protein subcellular localizations for eukaryotic proteins based on amino acid composition. In this research, the proteins are classified into the following eight groups: chloroplast, cytoplasm, extracellular, Golgi apparatus, lysosome, mitochondria, nucleus and peroxisome. We know subcellular localization is a typical classification problem; consequently, a one-against-one (1-v-1) multi-class support vector machine was introduced to construct the classifier. Unlike previous methods, ours considers the order information of protein sequences by a different method. Our method is tested in three subcellular localization predictions for prokaryotic proteins and four subcellular localization predictions for eukaryotic proteins on Reinhardt's dataset. The results are then compared to several other methods. The total prediction accuracies of two tests are both 100% by a self-consistency test, and are 92.9% and 84.14% by the jackknife test, respectively. Esub8 also provides excellent results: the total prediction accuracies are 100% by a self-consistency test and 87% by the jackknife test. CONCLUSIONS: Our method represents a different approach for predicting protein subcellular localization and achieved a satisfactory result; furthermore, we believe Esub8 will be a useful tool for predicting protein subcellular localizations in eukaryotic organisms

    Identify submitochondria and subchloroplast locations with pseudo amino acid composition: Approach from the strategy of discrete wavelet transform feature extraction

    Get PDF
    AbstractIt is very challenging and complicated to predict protein locations at the sub-subcellular level. The key to enhancing the prediction quality for protein sub-subcellular locations is to grasp the core features of a protein that can discriminate among proteins with different subcompartment locations. In this study, a different formulation of pseudoamino acid composition by the approach of discrete wavelet transform feature extraction was developed to predict submitochondria and subchloroplast locations. As a result of jackknife cross-validation, with our method, it can efficiently distinguish mitochondrial proteins from chloroplast proteins with total accuracy of 98.8% and obtained a promising total accuracy of 93.38% for predicting submitochondria locations. Especially the predictive accuracy for mitochondrial outer membrane and chloroplast thylakoid lumen were 82.93% and 82.22%, respectively, showing an improvement of 4.88% and 27.22% when other existing methods were compared. The results indicated that the proposed method might be employed as a useful assistant technique for identifying sub-subcellular locations. We have implemented our algorithm as an online service called SubIdent (http://bioinfo.ncu.edu.cn/services.aspx)

    iLoc-Euk: A Multi-Label Classifier for Predicting the Subcellular Localization of Singleplex and Multiplex Eukaryotic Proteins

    Get PDF
    Predicting protein subcellular localization is an important and difficult problem, particularly when query proteins may have the multiplex character, i.e., simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular location predictor can only be used to deal with the single-location or “singleplex” proteins. Actually, multiple-location or “multiplex” proteins should not be ignored because they usually posses some unique biological functions worthy of our special notice. By introducing the “multi-labeled learning” and “accumulation-layer scale”, a new predictor, called iLoc-Euk, has been developed that can be used to deal with the systems containing both singleplex and multiplex proteins. As a demonstration, the jackknife cross-validation was performed with iLoc-Euk on a benchmark dataset of eukaryotic proteins classified into the following 22 location sites: (1) acrosome, (2) cell membrane, (3) cell wall, (4) centriole, (5) chloroplast, (6) cyanelle, (7) cytoplasm, (8) cytoskeleton, (9) endoplasmic reticulum, (10) endosome, (11) extracellular, (12) Golgi apparatus, (13) hydrogenosome, (14) lysosome, (15) melanosome, (16) microsome (17) mitochondrion, (18) nucleus, (19) peroxisome, (20) spindle pole body, (21) synapse, and (22) vacuole, where none of proteins included has pairwise sequence identity to any other in a same subset. The overall success rate thus obtained by iLoc-Euk was 79%, which is significantly higher than that by any of the existing predictors that also have the capacity to deal with such a complicated and stringent system. As a user-friendly web-server, iLoc-Euk is freely accessible to the public at the web-site http://icpr.jci.edu.cn/bioinfo/iLoc-Euk. It is anticipated that iLoc-Euk may become a useful bioinformatics tool for Molecular Cell Biology, Proteomics, System Biology, and Drug Development Also, its novel approach will further stimulate the development of predicting other protein attributes

    Imbalanced Multi-Modal Multi-Label Learning for Subcellular Localization Prediction of Human Proteins with Both Single and Multiple Sites

    Get PDF
    It is well known that an important step toward understanding the functions of a protein is to determine its subcellular location. Although numerous prediction algorithms have been developed, most of them typically focused on the proteins with only one location. In recent years, researchers have begun to pay attention to the subcellular localization prediction of the proteins with multiple sites. However, almost all the existing approaches have failed to take into account the correlations among the locations caused by the proteins with multiple sites, which may be the important information for improving the prediction accuracy of the proteins with multiple sites. In this paper, a new algorithm which can effectively exploit the correlations among the locations is proposed by using Gaussian process model. Besides, the algorithm also can realize optimal linear combination of various feature extraction technologies and could be robust to the imbalanced data set. Experimental results on a human protein data set show that the proposed algorithm is valid and can achieve better performance than the existing approaches
    corecore