23,741 research outputs found

    Duino-Based Learning (DBL) in control engineering courses

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis document presents a project to develop freely redistributable materials to conduct educational lab projects with MATLAB, Simulink, Arduino and low-cost plants. This work materials introduce the fundamentals of Control Engineering through exercises and videos. Along with all this, the most important steps and issues appeared in the project are explained, so anyone interested on doing a project can have a starting point instead of starting a project from scratch, which most of times this results hard to implementPeer ReviewedPostprint (author's final draft

    Framework to Enhance Teaching and Learning in System Analysis and Unified Modelling Language

    Get PDF
    Cowling, MA ORCiD: 0000-0003-1444-1563; Munoz Carpio, JC ORCiD: 0000-0003-0251-5510Systems Analysis modelling is considered foundational for Information and Communication Technology (ICT) students, with introductory and advanced units included in nearly all ICT and computer science degrees. Yet despite this, novice systems analysts (learners) find modelling and systems thinking quite difficult to learn and master. This makes the process of teaching the fundamentals frustrating and time intensive. This paper will discuss the foundational problems that learners face when learning Systems Analysis modelling. Through a systematic literature review, a framework will be proposed based on the key problems that novice learners experience. In this proposed framework, a sequence of activities has been developed to facilitate understanding of the requirements, solutions and incremental modelling. An example is provided illustrating how the framework could be used to incorporate visualization and gaming elements into a Systems Analysis classroom; therefore, improving motivation and learning. Through this work, a greater understanding of the approach to teaching modelling within the computer science classroom will be provided, as well as a framework to guide future teaching activities

    Curriculum Guidelines for Undergraduate Programs in Data Science

    Get PDF
    The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in Data Science. The group consisted of 25 undergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science

    Reviews

    Get PDF
    Steve McDowell and Phil Race, 500 Computing Tips for Trainers, London: Kogan Page, ISBN: 0–7494–2675–6. Paperback, 160 pages, £15.99

    Learning the Course of Design and Analyze of Computer Algorithms via Online Coding

    Get PDF
    The course of design and analysis of computer algorithms is one of the core-course of computer science education; this paper presents an online coding framework to help students to learn the course of design and ananlysis of computer algorithms and other coding-related courses in computer science. With the online coding framework, a student can edit code in any web browser, and then executes it. This online coding framework can connect teachers, curriculum authors, and students in a unique social experience by tracking and streaming progress updates in real time. In particular, with the newly proposed framework, it is not difficult to find interesting and unexpected input values during students’practicing, and then help them to understand what their code is actually doing.DOI: http://dx.doi.org/10.11591/ijere.v2i3.257

    Exploration and Research on the Mixed Mode Curriculum of “Competition, Training and Teaching”

    Get PDF
    In response to the many problems encountered in the teaching of the “SSM Framework” course, a project-driven hybrid teaching model is proposed. The reform integrates “Competition, Training and Teaching” into one, utilizes online teaching platforms to arrange pre-class activities, carry out interactive teaching in class, and improve post-class practice. In teaching, the roles of teachers and students should be exchanged to fully mobilize students’ learning initiative and cultivate their ability to solve and analyze problems. In the assessment, a process evaluation mechanism is introduced to incorporate project construction into the assessment scope and improve practical application capabilities. The practical results indicate that the application of the new model in curriculum significantly enhances students’ learning interest and practical abilities, which is feasible for promotion

    Understanding best practices in control engineering education using the concept of TPACK

    Get PDF
    This study aimed to design an integrated pedagogical approach to advance introductory Process Control Engineering Education through the application of the Technological Pedagogical Content Knowledge (TPACK) framework, and evaluating its impact on student learning. The research is initially being undertaken at Nottingham Trent University, UK but we will next adapt it to a case study in Libya. This paper aims to strengthen the teaching of introductory Process Control by using appropriate approach es in universities to improve the learning outcomes for students. From this work a new schematic for teaching Process Control ha s be en developed and, moreover, a thoughtful best practice in introducing Process Control in engineering education can be developed

    Contours of Inclusion: Inclusive Arts Teaching and Learning

    Get PDF
    The purpose of this publication is to share models and case examples of the process of inclusive arts curriculum design and evaluation. The first section explains the conceptual and curriculum frameworks that were used in the analysis and generation of the featured case studies (i.e. Understanding by Design, Differentiated Instruction, and Universal Design for Learning). Data for the cases studies was collected from three urban sites (i.e. Los Angeles, San Francisco, and Boston) and included participant observations, student and teacher interviews, curriculum documentation, digital documentation of student learning, and transcripts from discussion forum and teleconference discussions from a professional learning community.The initial case studies by Glass and Barnum use the curricular frameworks to analyze and understand what inclusive practices look like in two case studies of arts-in-education programs that included students with disabilities. The second set of precedent case studies by Kronenberg and Blair, and Jenkins and Agois Hurel uses the frameworks to explain their process of including students by providing flexible arts learning options to support student learning of content standards. Both sets of case studies illuminate curricular design decisions and instructional strategies that supported the active engagement and learning of students with disabilities in educational settings shared with their peers. The second set of cases also illustrate the reflective process of using frameworks like Universal Design for Learning (UDL) to guide curricular design, responsive instructional differentiation, and the use of the arts as a rich, meaningful, and engaging option to support learning. Appended are curriculum design and evaluation tools. (Individual chapters contain references.
    • …
    corecore