37 research outputs found

    Pelaksanaan pembelajaran berasaskan kerja politeknik bersama industri

    Get PDF
    embelajaran Berasaskan Kerja (PBK) merupakan satu kaedah pembelajaran yang menggabungkan pembelajaran teori dan amali secara serentak dalam lapangan kerja sebenar, dengan tujuan untuk melahirkan graduan yang memiliki nilai kebolehkerjaan. Walaupun kaedah ini telah lama dilaksanakan di negara maju seperti Amerika Syarikat dan United Kingdom, tetapi di Malaysia ianya baru dilaksanakan pada tahun 2007 dan hanya melibatkan beberapa buah kolej komuniti pada peringkat awal. Walau bagaimanapun pada tahun 2010, pelaksanaan PBK telah dihentikan di kolej komuniti, dan dipindahkan di politeknik. Antara isu yang berlaku dalam pelaksanaan PBK politeknik semasa dalam industri ialah konsep pelaksanaan PBK, gaya pengajaran dan pembelajaran, kaedah penilaian, hubungan politeknik dengan industri, keseragaman konsep pelaksanaan PBK, isu dan cabaran dalam pelaksanaan PBK, dan perbezaan kaedah pelaksanaan PBK antara politeknik dengan kolej komuniti. Oleh itu, tujuan kajian ini dijalankan ialah untuk meneroka, memahami dan menjelaskan pelaksanaan PBK politeknik bersama industri. Kajian ini dijalankan menggunakan metodologi kajian kes kualitatif. Proses pengumpulan data di lapangan kajian dilaksanakan selama setahun menggunakan tek:nik temubual, pemerhatian dan analisis dokumen. Strategi persampelan variasi maksima, teknik persampelan snowball dan jenis persampelan bertujuan digunakan. Peserta kajian adalah daripada kalangan pengurusan dan pensyarah penyelaras PBK, penyelia industri dan pelajar yang terlibat dengan PBK. Dapatan kajian menunjukkan bahawa pelaksanaan PBK politeknik bersama industri berlaku banyak penambahbaikan dalam pelaksanaannya jika dibandingkan dengan pelaksanaan PBK di kolej komuniti sebelum ini, namun terdapat beberapa isu yang wujud, iaitu melibatkan kurikulum PBK yang tidak selari dengan dasar industri dan kelemahan penyelia industri dalam pengajaran dan pembelajaran

    A Robust Wheel Interface With a Novel Adaptive Controller for Computer/Robot-Assisted Motivating Rehabilitation

    Full text link
    TheraDrive is an effective system for post-stroke upper extremity rehabilitation. This system uses off-the-shelf computer gaming wheels with force feedback to help reduce motor impairment and improve function in the arms of stroke survivors. Preliminary results show that the TheraDrive system lacks a robust mechanical linkage that can withstand the large forces exerted by patients, and it lacks a patient-specific adaptive controller to deliver personalized therapy. It is also not capable of delivering effective therapy to severely low-functioning patients. A new low-cost, high-force haptic robot with a single degree of freedom has been developed to address these concerns. The resulting TheraDrive consists of an actuated hand crank with a compliant transmission. Actuation is provided by a brushed DC motor, geared to output up to 23 kgf at the end effector. To enable a human to interact with this system safely, a special compliant element was developed to double as a failsafe torque limiter. A set of strain gauges in the handle of the crank are used to determine the interaction forces between human and robot for use by the robot’s impedance controller. The impedance controller is used to render a one-dimensional force field that attracts or repels the end effector from a moving target point that the human must track during therapy exercises. As exercises are performed, an adaptive controller monitors patient performance and adjusts the force field accordingly. This allows the robot to compensate for gravity, variable mechanical advantage, limited range of motion, and other factors. More importantly, the adaptive controller ensures that exercises are difficult but doable, which is important for maintaining patient motivation. Experiments with a computer model of human and robot show the adaptive controller’s ability to maintain difficulty of exercises after a period of initial calibration

    Mobility related physical and functional losses due to aging and disease - a motivation for lower limb exoskeletons

    Get PDF
    Background: Physical and functional losses due to aging and diseases decrease human mobility, independence, and quality of life. This study is aimed at summarizing and quantifying these losses in order to motivate solutions to overcome them with a special focus on the possibilities by using lower limb exoskeletons. Methods: A narrative literature review was performed to determine a broad range of mobility-related physical and functional measures that are affected by aging and selected cardiovascular, respiratory, musculoskeletal, and neurological diseases. Results: The study identified that decreases in limb maximum muscle force and power (33% and 49%, respectively, 25–75 yrs) and in maximum oxygen consumption (40%, 20–80 yrs) occur for older adults compared to young adults. Reaction times more than double (18–90 yrs) and losses in the visual, vestibular, and somatosensory systems were reported. Additionally, we found decreases in steps per day (75%, 60–85 yrs), maximum walking speed (24% 25–75 yrs), and maximum six-minute and self-selected walking speed (38% and 21%, respectively, 20–85 yrs), while we found increases in the number of falls relative to the number of steps per day (800%), injuries due to falls (472%, 30–90 yrs) and deaths caused by fall (4000%, 65–90 yrs). Measures were identified to be worse for individuals with impaired mobility. Additional detrimental effects identified for them were the loss of upright standing and locomotion, freezing in movement, joint stress, pain, and changes in gait patterns. Discussion: This review shows that aging and chronic conditions result in wide-ranging losses in physical and sensory capabilities. While the impact of these losses are relatively modest for level walking, they become limiting during more demanding tasks such as walking on inclined ground, climbing stairs, or walking over longer periods, and especially when coupled with a debilitating disease. As the physical and functional parameters are closely related, we believe that lost functional capabilities can be indirectly improved by training of the physical capabilities. However, assistive devices can supplement the lost functional capabilities directly by compensating for losses with propulsion, weight support, and balance support. Conclusions: Exoskeletons are a new generation of assistive devices that have the potential to provide both, training capabilities and functional compensation, to enhance human mobility

    Human Health Engineering Volume II

    Get PDF
    In this Special Issue on “Human Health Engineering Volume II”, we invited submissions exploring recent contributions to the field of human health engineering, i.e., technology for monitoring the physical or mental health status of individuals in a variety of applications. Contributions could focus on sensors, wearable hardware, algorithms, or integrated monitoring systems. We organized the different papers according to their contributions to the main parts of the monitoring and control engineering scheme applied to human health applications, namely papers focusing on measuring/sensing physiological variables, papers highlighting health-monitoring applications, and examples of control and process management applications for human health. In comparison to biomedical engineering, we envision that the field of human health engineering will also cover applications for healthy humans (e.g., sports, sleep, and stress), and thus not only contribute to the development of technology for curing patients or supporting chronically ill people, but also to more general disease prevention and optimization of human well-being

    Modelling and Control of Lower Limb Exoskeletons and Walking Aid for Fundamental Mobility Tasks

    Get PDF

    Sensores em fibra ótica para o estudo biomecânico do disco intervertebral

    Get PDF
    Doutoramento em Engenharia MecânicaO presente trabalho teve como objetivo principal estudar o comportamento mecânico do disco intervertebral recorrendo a sensores em fibra ótica. Na expetativa de efetuar o melhor enquadramento do tema foi efetuada uma revisão exaustiva das várias configurações de sensores em fibra ótica que têm vindo a ser utilizadas em aplicações biomédicas e biomecânicas, nomeadamente para medição de temperatura, deformação, força e pressão. Nesse âmbito, procurou-se destacar as potencialidades dos sensores em fibra ótica e apresentá-los como uma tecnologia alternativa ou até de substituição das tecnologias associadas a sensores convencionais. Tendo em vista a aplicação de sensores em fibra ótica no estudo do comportamento do disco intervertebral efetuou-se também uma revisão exaustiva da coluna vertebral e, particularmente, do conceito de unidade funcional. A par de uma descrição anatómica e funcional centrada no disco intervertebral, vértebras adjacentes e ligamentos espinais foram ainda destacadas as suas propriedades mecânicas e descritos os procedimentos mais usuais no estudo dessas propriedades. A componente experimental do presente trabalho descreve um conjunto de experiências efetuadas com unidades funcionais cadavéricas utilizando sensores convencionais e sensores em fibra ótica com vista à medição da deformação do disco intervertebral sob cargas compressivas uniaxiais. Inclui ainda a medição in vivo da pressão intradiscal num disco lombar de uma ovelha sob efeito de anestesia. Para esse efeito utilizou-se um sensor comercial em fibra ótica e desenvolveu-se a respetiva unidade de interrogação. Finalmente apresenta-se os resultados da investigação em curso que tem como objetivo propor e desenvolver protótipos de sensores em fibra ótica para aplicações biomédicas e biomecânicas. Nesse sentido, são apresentadas duas soluções de sensores interferométricos para medição da pressão em fluídos corporais.The present work aimed to study the mechanical behavior of the intervertebral disc using fiber optic sensors. To address the theme an exhaustive review of the various configurations of fiber optic sensors that have been used in biomechanical and biomedical applications, in particular for measuring temperature, strain, force and pressure, was conducted. In this context, an effort was made to highlight the advantages of fiber optic sensors and present them as an alternative or even a substitution technology to conventional sensors. In view of the application of fiber optic sensors to study intervertebral disc behavior an exhaustive review of the spine and, particularly, of the spinal motion segment was made. Along with an anatomical and functional description of the intervertebral disc, the adjacent vertebrae and spinal ligaments, their mechanical properties were also highlighted as well as the most common procedures and guidelines followed in the study of these properties. The experimental section of the present work describes a set of tests performed with cadaveric spinal motion segments using conventional and fiber optic sensors to assess strain of the intervertebral disc under uniaxial compressive loads. This section also includes an experience reporting in vivo pressures measured in the lumbar disc of a sheep under general anesthesia. In this case, a commercial fiber optic sensor and a purpose-built interrogation unit were used. Finally, the results of ongoing research aiming to develop fiber optic sensors prototypes for biomedical and biomechanical applications are presented. Thus, the proof of concept of two possible interferometric configurations intended for pressure measurement in body fluids was presented

    3D bioprinted hydrogel scaffolds laden with Schwann cells for use as nerve repair conduits

    Get PDF
    The goal of nerve tissue engineering is to promote and guide axon growth across a site of nerve injury without misdirection. Bioengineered tissue scaffolds have been shown to be promising for the regeneration of damaged peripheral nerves. Schwann cells play a pivotal role following nerve injury by forming aligned “bands of Büngner” that promote and guide axon regeneration into the distal nerve segment. The incorporation of living Schwann cells into various hydrogels has therefore been urged during the fabrication of tissue engineered nerve scaffolds. The aim of this research is to characterize biomaterials suitable for 3D bioplotting of nerve repair scaffolds. Here a novel technique of scaffold fabrication has been optimized to print alginate-based three-dimensional tissue scaffolds containing hyaluronic acid and living Schwann cells. Alginate/hyaluronic acid scaffolds were successfully fabricated with good printability and cell viability. Addition of the polycation polyethyleneimine (PEI) during the fabrication process stabilized the structure of alginate through the formation of a polyelectrolyte complex and had a significant influence on the degree of swelling, degradation rate, mechanical property, and release kinetics of incorporated protein within the scaffolds. A preliminary in vivo study showed the feasibility of implanting 3D printed alginate/hyaluronic acid scaffolds as nerve conduits in Sprague-Dawley (SD) rats with resected sciatic nerves. However alginate/hyaluronic acid scaffolds were found to be unsuitable for axonal regeneration. Further in vitro culture of Schwann cells was performed in collagen type-I, fibrin, fibrin/hyaluronic acid, and their combination with alginate. It was found that Schwann cells had more favorable cell morphology in fibrin/hyaluronic acid or collagen without alginate. Schwann cell proliferation and alignment were better in fibrin/hyaluronic acid. Therefore fibrin/hyaluronic acid is more ideal than most other hydrogel formulations for use in the bioprinting of nerve repair tissue engineering scaffolds, which incorporate cellular elements. As Schwann cells also align along the long axis of the printed fibrin/hyaluronic acid strands, 3D bioprinting of multiple layers of crosslinked fibrin strands can be used to fabricate a nerve conduit mimicking the bands of Büngner

    Aerospace Medicine and Biology: 1983 cumulative index

    Get PDF
    This publication is a cumulative index to the abstracts contained in the Supplements 242 through 253 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes six indexes--subject, personal author, corporate source, contract number, report number, and accession number
    corecore