34,854 research outputs found

    Bitcoin and the Rise of Decentralized Autonomous Organizations

    Get PDF
    Bitcoin represents the first real-world implementation of a “decentralized autonomous organization” (DAO) and offers a new paradigm for organization design. Imagine working for a global business organization whose routine tasks are powered by a software protocol instead of being governed by managers and employees. Task assignments and rewards are randomized by the algorithm. Information is not channelled through a hierarchy but recorded transparently and securely on an immutable public ledger called “blockchain”. Further, the organization decides on design and strategy changes through a democratic voting process involving a previously unseen class of stakeholders called “miners”. Agreements need to be reached at the organizational level for any proposed protocol changes to be approved and activated. How do DAOs solve the universal problem of organizing with such novel solutions? What are the implications? We use Bitcoin as an example to shed light on how a DAO works in the cryptocurrency industry, where it provides a peer-to-peer, decentralized and disintermediated payment system that can compete against traditional financial institutions. We also invite commentaries from renowned organization scholars to share their views on this intriguing phenomenon

    Unjamming Lightning: A Systematic Approach

    Get PDF
    Users of decentralized financial networks suffer from inventive security exploits. Identity-based fraud prevention methods are inapplicable in these networks, as they contradict their privacy-minded design philosophy. Novel mitigation strategies are therefore needed. Their rollout, however, may damage other desirable network properties. In this work, we introduce an evaluation framework for mitigation strategies in decentralized financial networks. This framework allows researchers and developers to examine and compare proposed protocol modifications along multiple axes, such as privacy, security, and user experience. As an example, we focus on the jamming attack in the Lightning Network. Lightning is a peer-to-peer payment channel network on top of Bitcoin. Jamming is a cheap denial-of-service attack that allows an adversary to temporarily disable Lightning channels by flooding them with failing payments. We propose a practical solution to jamming that combines unconditional fees and peer reputation. Guided by the framework, we show that, while discouraging jamming, our solution keeps the protocol incentive compatible. It also preserves security, privacy, and user experience, and is straightforward to implement. We support our claims analytically and with simulations. Moreover, our anti-jamming solution may help alleviate other Lightning issues, such as malicious channel balance probing
    • …
    corecore