16,737 research outputs found

    View Independent Vehicle Make, Model and Color Recognition Using Convolutional Neural Network

    Get PDF
    This paper describes the details of Sighthound's fully automated vehicle make, model and color recognition system. The backbone of our system is a deep convolutional neural network that is not only computationally inexpensive, but also provides state-of-the-art results on several competitive benchmarks. Additionally, our deep network is trained on a large dataset of several million images which are labeled through a semi-automated process. Finally we test our system on several public datasets as well as our own internal test dataset. Our results show that we outperform other methods on all benchmarks by significant margins. Our model is available to developers through the Sighthound Cloud API at https://www.sighthound.com/products/cloudComment: 7 Page

    Incorporating Intra-Class Variance to Fine-Grained Visual Recognition

    Full text link
    Fine-grained visual recognition aims to capture discriminative characteristics amongst visually similar categories. The state-of-the-art research work has significantly improved the fine-grained recognition performance by deep metric learning using triplet network. However, the impact of intra-category variance on the performance of recognition and robust feature representation has not been well studied. In this paper, we propose to leverage intra-class variance in metric learning of triplet network to improve the performance of fine-grained recognition. Through partitioning training images within each category into a few groups, we form the triplet samples across different categories as well as different groups, which is called Group Sensitive TRiplet Sampling (GS-TRS). Accordingly, the triplet loss function is strengthened by incorporating intra-class variance with GS-TRS, which may contribute to the optimization objective of triplet network. Extensive experiments over benchmark datasets CompCar and VehicleID show that the proposed GS-TRS has significantly outperformed state-of-the-art approaches in both classification and retrieval tasks.Comment: 6 pages, 5 figure

    Part-based Multi-stream Model for Vehicle Searching

    Full text link
    Due to the enormous requirement in public security and intelligent transportation system, searching an identical vehicle has become more and more important. Current studies usually treat vehicle as an integral object and then train a distance metric to measure the similarity among vehicles. However, these raw images may be exactly similar to ones with different identification and include some pixels in background that may disturb the distance metric learning. In this paper, we propose a novel and useful method to segment an original vehicle image into several discriminative foreground parts, and these parts consist of some fine grained regions that are named discriminative patches. After that, these parts combined with the raw image are fed into the proposed deep learning network. We can easily measure the similarity of two vehicle images by computing the Euclidean distance of the features from FC layer. Two main contributions of this paper are as follows. Firstly, a method is proposed to estimate if a patch in a raw vehicle image is discriminative or not. Secondly, a new Part-based Multi-Stream Model (PMSM) is designed and optimized for vehicle retrieval and re-identification tasks. We evaluate the proposed method on the VehicleID dataset, and the experimental results show that our method can outperform the baseline.Comment: Published in International Conference on Pattern Recognition 201

    Vehicle-Rear: A New Dataset to Explore Feature Fusion for Vehicle Identification Using Convolutional Neural Networks

    Full text link
    This work addresses the problem of vehicle identification through non-overlapping cameras. As our main contribution, we introduce a novel dataset for vehicle identification, called Vehicle-Rear, that contains more than three hours of high-resolution videos, with accurate information about the make, model, color and year of nearly 3,000 vehicles, in addition to the position and identification of their license plates. To explore our dataset we design a two-stream CNN that simultaneously uses two of the most distinctive and persistent features available: the vehicle's appearance and its license plate. This is an attempt to tackle a major problem: false alarms caused by vehicles with similar designs or by very close license plate identifiers. In the first network stream, shape similarities are identified by a Siamese CNN that uses a pair of low-resolution vehicle patches recorded by two different cameras. In the second stream, we use a CNN for OCR to extract textual information, confidence scores, and string similarities from a pair of high-resolution license plate patches. Then, features from both streams are merged by a sequence of fully connected layers for decision. In our experiments, we compared the two-stream network against several well-known CNN architectures using single or multiple vehicle features. The architectures, trained models, and dataset are publicly available at https://github.com/icarofua/vehicle-rear
    • …
    corecore