1,399 research outputs found

    Channel Estimation for Massive MIMO-OFDM Systems by Tracking the Joint Angle-Delay Subspace

    Get PDF
    In this paper, we propose joint angle-delay subspace based channel estimation in single cell for broadband massive multiple-input and multiple-output (MIMO) systems employing orthogonal frequency division multiplexing (OFDM) modulation. Based on a parametric channel model, we present a new concept of the joint angle-delay subspace which can be tracked by the low-complexity low-rank adaptive filtering (LORAF) algorithm. Then, we investigate an interference-free transmission condition that the joint angle-delay subspaces of the users reusing the same pilots are non-overlapping. Since the channel statistics are usually unknown, we develop a robust minimum mean square error (MMSE) estimator under the worst precondition of pilot decontamination, considering that the joint angle-delay subspaces of the interfering users fully overlap. Furthermore, motivated by the interference-free transmission criteria, we present a novel low-complexity greedy pilot scheduling algorithm to avoid the problem of initial value sensitivity. Simulation results show that the joint angle-delay subspace can be estimated effectively, and the proposed pilot reuse scheme combined with robust MMSE channel estimation offers significant performance gains

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    Parallel-Interference-Cancellation-Assisted Decision-Directed Channel Estimation for OFDM Systems using Multiple Transmit Antennas

    No full text
    The number of transmit antennas that can be employed in the context of least-squares (LS) channel estimation contrived for orthogonal frequency division multiplexing (OFDM) systems employing multiple transmit antennas is limited by the ratio of the number of subcarriers and the number of significant channel impulse response (CIR)-related taps. In order to allow for more complex scenarios in terms of the number of transmit antennas and users supported, CIR-related tap prediction-filtering-based parallel interference cancellation (PIC)-assisted decision-directed channel estimation (DDCE) is investigated. New explicit expressions are derived for the estimator’s mean-square error (MSE), and a new iterative procedure is devised for the offline optimization of the CIR-related tap predictor coefficients. These new expressions are capable of accounting for the estimator’s novel recursive structure. In the context of our performance results, it is demonstrated, for example, that the estimator is capable of supporting L = 16 transmit antennas, when assuming K = 512 subcarriers and K0 = 64 significant CIR taps, while LS-optimized DDCE would be limited to employing L = 8 transmit antennas. Index Terms—Decision-directed channel estimation (DDCE), multiple transmit antennas, orthogonal frequency division multiplexing (OFDM), parallel interference cancellation (PIC)
    • 

    corecore