54 research outputs found

    A Survey on Particle Swarm Optimization for Association Rule Mining

    Get PDF
    Association rule mining (ARM) is one of the core techniques of data mining to discover potentially valuable association relationships from mixed datasets. In the current research, various heuristic algorithms have been introduced into ARM to address the high computation time of traditional ARM. Although a more detailed review of the heuristic algorithms based on ARM is available, this paper differs from the existing reviews in that we expected it to provide a more comprehensive and multi-faceted survey of emerging research, which could provide a reference for researchers in the field to help them understand the state-of-the-art PSO-based ARM algorithms. In this paper, we review the existing research results. Heuristic algorithms for ARM were divided into three main groups, including biologically inspired, physically inspired, and other algorithms. Additionally, different types of ARM and their evaluation metrics are described in this paper, and the current status of the improvement in PSO algorithms is discussed in stages, including swarm initialization, algorithm parameter optimization, optimal particle update, and velocity and position updates. Furthermore, we discuss the applications of PSO-based ARM algorithms and propose further research directions by exploring the existing problems.publishedVersio

    Ant colony optimization approach for stacking configurations

    Full text link
    In data mining, classifiers are generated to predict the class labels of the instances. An ensemble is a decision making system which applies certain strategies to combine the predictions of different classifiers and generate a collective decision. Previous research has empirically and theoretically demonstrated that an ensemble classifier can be more accurate and stable than its component classifiers in most cases. Stacking is a well-known ensemble which adopts a two-level structure: the base-level classifiers to generate predictions and the meta-level classifier to make collective decisions. A consequential problem is: what learning algorithms should be used to generate the base-level and meta-level classifier in the Stacking configuration? It is not easy to find a suitable configuration for a specific dataset. In some early works, the selection of a meta classifier and its training data are the major concern. Recently, researchers have tried to apply metaheuristic methods to optimize the configuration of the base classifiers and the meta classifier. Ant Colony Optimization (ACO), which is inspired by the foraging behaviors of real ant colonies, is one of the most popular approaches among the metaheuristics. In this work, we propose a novel ACO-Stacking approach that uses ACO to tackle the Stacking configuration problem. This work is the first to apply ACO to the Stacking configuration problem. Different implementations of the ACO-Stacking approach are developed. The first version identifies the appropriate learning algorithms in generating the base-level classifiers while using a specific algorithm to create the meta-level classifier. The second version simultaneously finds the suitable learning algorithms to create the base-level classifiers and the meta-level classifier. Moreover, we study how different kinds on local information of classifiers will affect the classification results. Several pieces of local information collected from the initial phase of ACO-Stacking are considered, such as the precision, f-measure of each classifier and correlative differences of paired classifiers. A series of experiments are performed to compare the ACO-Stacking approach with other ensembles on a number of datasets of different domains and sizes. The experiments show that the new approach can achieve promising results and gain advantages over other ensembles. The correlative differences of the classifiers could be the best local information in this approach. Under the agile ACO-Stacking framework, an application to deal with a direct marketing problem is explored. A real world database from a US-based catalog company, containing more than 100,000 customer marketing records, is used in the experiments. The results indicate that our approach can gain more cumulative response lifts and cumulative profit lifts in the top deciles. In conclusion, it is competitive with some well-known conventional and ensemble data mining methods

    Learning lost temporal fuzzy association rules

    Get PDF
    Fuzzy association rule mining discovers patterns in transactions, such as shopping baskets in a supermarket, or Web page accesses by a visitor to a Web site. Temporal patterns can be present in fuzzy association rules because the underlying process generating the data can be dynamic. However, existing solutions may not discover all interesting patterns because of a previously unrecognised problem that is revealed in this thesis. The contextual meaning of fuzzy association rules changes because of the dynamic feature of data. The static fuzzy representation and traditional search method are inadequate. The Genetic Iterative Temporal Fuzzy Association Rule Mining (GITFARM) framework solves the problem by utilising flexible fuzzy representations from a fuzzy rule-based system (FRBS). The combination of temporal, fuzzy and itemset space was simultaneously searched with a genetic algorithm (GA) to overcome the problem. The framework transforms the dataset to a graph for efficiently searching the dataset. A choice of model in fuzzy representation provides a trade-off in usage between an approximate and descriptive model. A method for verifying the solution to the hypothesised problem was presented. The proposed GA-based solution was compared with a traditional approach that uses an exhaustive search method. It was shown how the GA-based solution discovered rules that the traditional approach did not. This shows that simultaneously searching for rules and membership functions with a GA is a suitable solution for mining temporal fuzzy association rules. So, in practice, more knowledge can be discovered for making well-informed decisions that would otherwise be lost with a traditional approach.EPSRC DT

    Machine Learning Methods for Generating High Dimensional Discrete Datasets

    Get PDF
    The development of platforms and techniques for emerging Big Data and Machine Learning applications requires the availability of real-life datasets. A possible solution is to synthesize datasets that reflect patterns of real ones using a two-step approach: first, a real dataset X is analyzed to derive relevant patterns Z and, then, to use such patterns for reconstructing a new dataset X\u27 that preserves the main characteristics of X. This survey explores two possible approaches: (1) Constraint-based generation and (2) probabilistic generative modeling. The former is devised using inverse mining (IFM) techniques, and consists of generating a dataset satisfying given support constraints on the itemsets of an input set, that are typically the frequent ones. By contrast, for the latter approach, recent developments in probabilistic generative modeling (PGM) are explored that model the generation as a sampling process from a parametric distribution, typically encoded as neural network. The two approaches are compared by providing an overview of their instantiations for the case of discrete data and discussing their pros and cons

    Penguins Search Optimisation Algorithm for Association Rules Mining

    Get PDF
    Association Rules Mining (ARM) is one of the most popular and well-known approaches for the decision-making process. All existing ARM algorithms are time consuming and generate a very large number of association rules with high overlapping. To deal with this issue, we propose a new ARM approach based on penguins search optimisation algorithm (Pe-ARM for short). Moreover, an efficient measure is incorporated into the main process to evaluate the amount of overlapping among the generated rules. The proposed approach also ensures a good diversification over the whole solutions space. To demonstrate the effectiveness of the proposed approach, several experiments have been carried out on different datasets and specifically on the biological ones. The results reveal that the proposed approach outperforms the well-known ARM algorithms in both execution time and solution quality

    Adaptive firefly algorithm for hierarchical text clustering

    Get PDF
    Text clustering is essentially used by search engines to increase the recall and precision in information retrieval. As search engine operates on Internet content that is constantly being updated, there is a need for a clustering algorithm that offers automatic grouping of items without prior knowledge on the collection. Existing clustering methods have problems in determining optimal number of clusters and producing compact clusters. In this research, an adaptive hierarchical text clustering algorithm is proposed based on Firefly Algorithm. The proposed Adaptive Firefly Algorithm (AFA) consists of three components: document clustering, cluster refining, and cluster merging. The first component introduces Weight-based Firefly Algorithm (WFA) that automatically identifies initial centers and their clusters for any given text collection. In order to refine the obtained clusters, a second algorithm, termed as Weight-based Firefly Algorithm with Relocate (WFAR), is proposed. Such an approach allows the relocation of a pre-assigned document into a newly created cluster. The third component, Weight-based Firefly Algorithm with Relocate and Merging (WFARM), aims to reduce the number of produced clusters by merging nonpure clusters into the pure ones. Experiments were conducted to compare the proposed algorithms against seven existing methods. The percentage of success in obtaining optimal number of clusters by AFA is 100% with purity and f-measure of 83% higher than the benchmarked methods. As for entropy measure, the AFA produced the lowest value (0.78) when compared to existing methods. The result indicates that Adaptive Firefly Algorithm can produce compact clusters. This research contributes to the text mining domain as hierarchical text clustering facilitates the indexing of documents and information retrieval processes

    Predicate based association rules mining with new interestingness measure

    Get PDF
    Association Rule Mining (ARM) is one of the fundamental components in the field of data mining that discovers frequent itemsets and interesting relationships for predicting the associative and correlative behaviours for new data. However, traditional ARM techniques are based on support-confidence that discovers interesting association rules (ARs) using predefined minimum support (minsupp) and minimum confidence (minconf) threshold. In addition, traditional AR techniques only consider frequent items while ignoring rare ones. Thus, a new parameter-less predicated based ARM technique was proposed to address these limitations, which was enhanced to handle the frequent and rare items at the same time. Furthermore, a new interestingness measure, called g measure, was developed to select only highly interesting rules. In this proposed technique, interesting combinations were firstly selected by considering both the frequent and the rare items from a dataset. They were then mapped to the pseudo implications using predefined logical conditions. Later, inference rules were used to validate the pseudo-implications to discover rules within the set of mapped pseudo-implications. The resultant set of interesting rules was then referred to as the predicate based association rules. Zoo, breast cancer, and car evaluation datasets were used for conducting experiments. The results of the experiments were evaluated by its comparison with various classification techniques, traditional ARM technique and the coherent rule mining technique. The predicate-based rule mining approach gained an accuracy of 93.33%. In addition, the results of the g measure were compared with a state-of-the-art interestingness measure developed for a coherent rule mining technique called the h value. Predicate rules were discovered with an average confidence value of 0.754 for the zoo dataset and 0.949 for the breast cancer dataset, while the average confidence of the predicate rules found from the car evaluation dataset was 0.582. Results of this study showed that a set of interesting and highly reliable rules were discovered, including frequent, rare and negative association rules that have a higher confidence value. This research resulted in designing a methodology in rule mining which does not rely on the minsupp and minconf threshold. Also, a complete set of association rules are discovered by the proposed technique. Finally, the interestingness measure property for the selection of combinations from datasets makes it possible to reduce the exponential searching of the rules

    Clustering Arabic Tweets for Sentiment Analysis

    Get PDF
    The focus of this study is to evaluate the impact of linguistic preprocessing and similarity functions for clustering Arabic Twitter tweets. The experiments apply an optimized version of the standard K-Means algorithm to assign tweets into positive and negative categories. The results show that root-based stemming has a significant advantage over light stemming in all settings. The Averaged Kullback-Leibler Divergence similarity function clearly outperforms the Cosine, Pearson Correlation, Jaccard Coefficient and Euclidean functions. The combination of the Averaged Kullback-Leibler Divergence and root-based stemming achieved the highest purity of 0.764 while the second-best purity was 0.719. These results are of importance as it is contrary to normal-sized documents where, in many information retrieval applications, light stemming performs better than root-based stemming and the Cosine function is commonly used

    Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement

    Get PDF
    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method
    corecore