677 research outputs found

    Celestial compass sensor mimics the insect eye for navigation under cloudy and occluded skies

    Get PDF
    Insects use the sun’s position (even when concealed) as a compass for navigation by filtering celestial light intensity and polarisation through their compound eyes. To replicate this functionality, we present a sensor that imitates essential aspects of insect eyes, particularly the fan-like arrangement of polarised light receptors in their dorsal rim area. Our sensor comprises a ring of eight pairs of photodiodes (evaluating two orthogonal orientations of polarised light) to analyse the skylight coming from different directions. Because the layout of our sensor aligns with the polarised light pattern in the sky, a circular-mean model that integrates information spatially across the analysers can estimate the solar azimuth. When using the same sensor design, our model achieves lower compass errors than alternative (and computationally more complex) algorithms, especially under cloudy and occluded skies. Thus, the morphology and processing of the insect celestial compass provide an efficient and robust directional input for navigation

    Adaptive Algorithms for 2–Channel Polarization Sensing under Various Polarization Statistics with Non-Uniform Distributions

    Get PDF
    The polarization of light carries much useful information about the environment. Biological studies have shown that some animal species use polarization information for navigation and other purposes. It has been previously shown that a bio-inspired Polarization Difference Imaging technique can facilitate detection and feature extraction of targets in scattering media. It has also been established by S. Tyo1 that Polarization Sum and Polarization Difference are the optimum pair of linear combinations of images taken through two orthogonally oriented linear polarizers of a scene having a uniform distribution of polarization directions. However, in many real environments the scene has a non-uniform distribution of polarization directions. Using principal component analysis of the polarization statistics of the scene, here we develop a method to determine the two optimum information channels with unequal weighting coefficients that can be formed as linear combinations of the images of a scene taken through a pair of linear polarizers not constrained to the horizontal and vertical directions of the scene We determine the optimal orientations of linear polarization filters that enhance separation of a target from the background, where the target is defined as an area with distinct polarization characteristics as compared to the background. Experimental results confirm that in most situations adaptive polarization difference imaging outperforms conventional polarization difference imaging with fixed channels

    Combining omnidirectional vision with polarization vision for robot navigation

    Get PDF
    La polarisation est le phénomène qui décrit les orientations des oscillations des ondes lumineuses qui sont limitées en direction. La lumière polarisée est largement utilisée dans le règne animal,à partir de la recherche de nourriture, la défense et la communication et la navigation. Le chapitre (1) aborde brièvement certains aspects importants de la polarisation et explique notre problématique de recherche. Nous visons à utiliser un capteur polarimétrique-catadioptrique car il existe de nombreuses applications qui peuvent bénéficier d'une telle combinaison en vision par ordinateur et en robotique, en particulier pour l'estimation d'attitude et les applications de navigation. Le chapitre (2) couvre essentiellement l'état de l'art de l'estimation d'attitude basée sur la vision.Quand la lumière non-polarisée du soleil pénètre dans l'atmosphère, l'air entraine une diffusion de Rayleigh, et la lumière devient partiellement linéairement polarisée. Le chapitre (3) présente les motifs de polarisation de la lumière naturelle et couvre l'état de l'art des méthodes d'acquisition des motifs de polarisation de la lumière naturelle utilisant des capteurs omnidirectionnels (par exemple fisheye et capteurs catadioptriques). Nous expliquons également les caractéristiques de polarisation de la lumière naturelle et donnons une nouvelle dérivation théorique de son angle de polarisation.Notre objectif est d'obtenir une vue omnidirectionnelle à 360 associée aux caractéristiques de polarisation. Pour ce faire, ce travail est basé sur des capteurs catadioptriques qui sont composées de surfaces réfléchissantes et de lentilles. Généralement, la surface réfléchissante est métallique et donc l'état de polarisation de la lumière incidente, qui est le plus souvent partiellement linéairement polarisée, est modifiée pour être polarisée elliptiquement après réflexion. A partir de la mesure de l'état de polarisation de la lumière réfléchie, nous voulons obtenir l'état de polarisation incident. Le chapitre (4) propose une nouvelle méthode pour mesurer les paramètres de polarisation de la lumière en utilisant un capteur catadioptrique. La possibilité de mesurer le vecteur de Stokes du rayon incident est démontré à partir de trois composants du vecteur de Stokes du rayon réfléchi sur les quatre existants.Lorsque les motifs de polarisation incidents sont disponibles, les angles zénithal et azimutal du soleil peuvent être directement estimés à l'aide de ces modèles. Le chapitre (5) traite de l'orientation et de la navigation de robot basées sur la polarisation et différents algorithmes sont proposés pour estimer ces angles dans ce chapitre. A notre connaissance, l'angle zénithal du soleil est pour la première fois estimé dans ce travail à partir des schémas de polarisation incidents. Nous proposons également d'estimer l'orientation d'un véhicule à partir de ces motifs de polarisation.Enfin, le travail est conclu et les possibles perspectives de recherche sont discutées dans le chapitre (6). D'autres exemples de schémas de polarisation de la lumière naturelle, leur calibrage et des applications sont proposées en annexe (B).Notre travail pourrait ouvrir un accès au monde de la vision polarimétrique omnidirectionnelle en plus des approches conventionnelles. Cela inclut l'orientation bio-inspirée des robots, des applications de navigation, ou bien la localisation en plein air pour laquelle les motifs de polarisation de la lumière naturelle associés à l'orientation du soleil à une heure précise peuvent aboutir à la localisation géographique d'un véhiculePolarization is the phenomenon that describes the oscillations orientations of the light waves which are restricted in direction. Polarized light has multiple uses in the animal kingdom ranging from foraging, defense and communication to orientation and navigation. Chapter (1) briefly covers some important aspects of polarization and explains our research problem. We are aiming to use a polarimetric-catadioptric sensor since there are many applications which can benefit from such combination in computer vision and robotics specially robot orientation (attitude estimation) and navigation applications. Chapter (2) mainly covers the state of art of visual based attitude estimation.As the unpolarized sunlight enters the Earth s atmosphere, it is Rayleigh-scattered by air, and it becomes partially linearly polarized. This skylight polarization provides a signi cant clue to understanding the environment. Its state conveys the information for obtaining the sun orientation. Robot navigation, sensor planning, and many other applications may bene t from using this navigation clue. Chapter (3) covers the state of art in capturing the skylight polarization patterns using omnidirectional sensors (e.g fisheye and catadioptric sensors). It also explains the skylight polarization characteristics and gives a new theoretical derivation of the skylight angle of polarization pattern. Our aim is to obtain an omnidirectional 360 view combined with polarization characteristics. Hence, this work is based on catadioptric sensors which are composed of reflective surfaces and lenses. Usually the reflective surface is metallic and hence the incident skylight polarization state, which is mostly partially linearly polarized, is changed to be elliptically polarized after reflection. Given the measured reflected polarization state, we want to obtain the incident polarization state. Chapter (4) proposes a method to measure the light polarization parameters using a catadioptric sensor. The possibility to measure the incident Stokes is proved given three Stokes out of the four reflected Stokes. Once the incident polarization patterns are available, the solar angles can be directly estimated using these patterns. Chapter (5) discusses polarization based robot orientation and navigation and proposes new algorithms to estimate these solar angles where, to the best of our knowledge, the sun zenith angle is firstly estimated in this work given these incident polarization patterns. We also propose to estimate any vehicle orientation given these polarization patterns. Finally the work is concluded and possible future research directions are discussed in chapter (6). More examples of skylight polarization patterns, their calibration, and the proposed applications are given in appendix (B). Our work may pave the way to move from the conventional polarization vision world to the omnidirectional one. It enables bio-inspired robot orientation and navigation applications and possible outdoor localization based on the skylight polarization patterns where given the solar angles at a certain date and instant of time may infer the current vehicle geographical location.DIJON-BU Doc.électronique (212319901) / SudocSudocFranceF

    Biologically Inspired Design of Context-Aware Smart Products

    Get PDF
    The rapid development of information and communication technologies (ICTs) and cyber–physical sys-tems (CPSs) has paved the way for the increasing popularity of smart products. Context-awareness isan important facet of product smartness. Unlike artifacts, various bio-systems are naturally characterizedby their extraordinary context-awareness. Biologically inspired design (BID) is one of the most commonlyemployed design strategies. However, few studies have examined the BID of context-aware smart prod-ucts to date. This paper presents a structured design framework to support the BID of context-awaresmart products. The meaning of context-awareness is defined from the perspective of product design.The framework is developed based on the theoretical foundations of the situated function–behavior–structure ontology. A structured design process is prescribed to leverage various biological inspirationsin order to support different conceptual design activities, such as problem formulation, structure refor-mulation, behavior reformulation, and function reformulation. Some existing design methods and emerg-ing design tools are incorporated into the framework. A case study is presented to showcase how thisframework can be followed to redesign a robot vacuum cleaner and make it more context-aware.Ó2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering andHigher Education Press Limited Company. This is an open access article under the CC BY-NC-ND licens

    Polarization Sensor Design for Biomedical Applications

    Get PDF
    Advances in fabrication technology have enabled the development of compact, rigid polarization image sensors by integrating pixelated polarization filters with standard image sensing arrays. These compact sensors have the capability for allowing new applications across a variety of disciplines, however their design and use may be influenced by many factors. The underlying image sensor, the pixelated polarization filters, and the incident lighting conditions all directly impact how the sensor performs. In this research endeavor, I illustrate how a complete understanding of these factors can lead to both new technologies and applications in polarization sensing. To investigate the performance of the underlying image sensor, I present a new CMOS image sensor architecture with a pixel capable of operation using either measured voltages or currents. I show a detailed noise analysis of both modes, and that, as designed, voltage mode operates with lower noise than current mode. Further, I integrated aluminum nanowires with this sensor post fabrication, realizing the design of a compact CMOS sensor with polarization sensitivity. I describe a full set of experiments designed as a benchmark to evaluate the performance of compact, integrated polarization sensors. I use these tests to evaluate for incident intensity, wavelength, focus, and polarization state, demonstrating the accuracy and limitations of polarization measurements with such a compact sensor. Using these as guides, I present two novel biomedical applications that rely on the compact, real-time nature of compact integrated polarimeters. I first demonstrate how these sensors can be used to measure the dynamics of soft tissue in real-time, with no moving parts or complex optical alignment. I used a 2 megapixel integrated polarization sensor to measure the direction and strength of alignment in a bovine flexor tendon at over 20 frames per second, with results that match the current method of rotating polarizers. Secondly, I present a new technique for optical neural recording that uses intrinsic polarization reflectance and requires no fluorescent dyes or electrodes. Exposing the antennal lobe of the locust Schistocerca americana, I was able to measure a change in the polarization reflectance during the introduction of the odors hexanol and octanol with the integrated CMOS polarization sensor

    Bio-Inspired Robotic Fish With Vision Based Target Tracking

    Get PDF
    The lionfish is an invasive species that out-competes and overcrowds native sh species along the eastern seaboard of the United States and down into the Caribbean. Lionfish populations are growing rapidly. Current methods of monitoring lionfish populations are costly and time intensive. A bio-inspired robotic fish was built to use as an autonomous lionfish tracking platform. Lionfish are tracked visually using an onboard processor. Five different computer vision methods for identification and tracking are proposed and discussed. These include: background subtraction, color tracking, mixture of Gaussian background subtraction, speeded up robust feature (SURF), and CamShift based tracking. Each of these methods were compared and their accuracy analyzed. CamShift based tracking is determined to be the most accurate for this application. Preliminary experiments for system identification and control design are discussed

    Taking Inspiration from Flying Insects to Navigate inside Buildings

    Get PDF
    These days, flying insects are seen as genuinely agile micro air vehicles fitted with smart sensors and also parsimonious in their use of brain resources. They are able to visually navigate in unpredictable and GPS-denied environments. Understanding how such tiny animals work would help engineers to figure out different issues relating to drone miniaturization and navigation inside buildings. To turn a drone of ~1 kg into a robot, miniaturized conventional avionics can be employed; however, this results in a loss of their flight autonomy. On the other hand, to turn a drone of a mass between ~1 g (or less) and ~500 g into a robot requires an innovative approach taking inspiration from flying insects both with regard to their flapping wing propulsion system and their sensory system based mainly on motion vision in order to avoid obstacles in three dimensions or to navigate on the basis of visual cues. This chapter will provide a snapshot of the current state of the art in the field of bioinspired optic flow sensors and optic flow-based direct feedback loops applied to micro air vehicles flying inside buildings
    • …
    corecore