60,752 research outputs found

    A Real-time Nonlinear Model Predictive Controller for Yaw Motion Optimization of Distributed Drive Electric Vehicles

    Get PDF
    This paper proposes a real-time nonlinear model predictive control (NMPC) strategy for direct yaw moment control (DYC) of distributed drive electric vehicles (DDEVs). The NMPC strategy is based on a control-oriented model built by integrating a single track vehicle model with the Magic Formula (MF) tire model. To mitigate the NMPC computational cost, the continuation/generalized minimal residual (C/GMRES) algorithm is employed and modified for real-time optimization. Since the traditional C/GMRES algorithm cannot directly solve the inequality constraint problem, the external penalty method is introduced to transform inequality constraints into an equivalently unconstrained optimization problem. Based on the Pontryagin’s minimum principle (PMP), the existence and uniqueness for solution of the proposed C/GMRES algorithm are proven. Additionally, to achieve fast initialization in C/GMRES algorithm, the varying predictive duration is adopted so that the analytic expressions of optimally initial solutions in C/GMRES algorithm can be derived and gained. A Karush-Kuhn-Tucker (KKT) condition based control allocation method distributes the desired traction and yaw moment among four independent motors. Numerical simulations are carried out by combining CarSim and Matlab/Simulink to evaluate the effectiveness of the proposed strategy. Results demonstrate that the real-time NMPC strategy can achieve superior vehicle stability performance, guarantee the given safety constraints, and significantly reduce the computational efforts

    Global Sensitivity Methods for Design of Experiments in Lithium-ion Battery Context

    Full text link
    Battery management systems may rely on mathematical models to provide higher performance than standard charging protocols. Electrochemical models allow us to capture the phenomena occurring inside a lithium-ion cell and therefore, could be the best model choice. However, to be of practical value, they require reliable model parameters. Uncertainty quantification and optimal experimental design concepts are essential tools for identifying systems and estimating parameters precisely. Approximation errors in uncertainty quantification result in sub-optimal experimental designs and consequently, less-informative data, and higher parameter unreliability. In this work, we propose a highly efficient design of experiment method based on global parameter sensitivities. This novel concept is applied to the single-particle model with electrolyte and thermal dynamics (SPMeT), a well-known electrochemical model for lithium-ion cells. The proposed method avoids the simplifying assumption of output-parameter linearization (i.e., local parameter sensitivities) used in conventional Fisher information matrix-based experimental design strategies. Thus, the optimized current input profile results in experimental data of higher information content and in turn, in more precise parameter estimates.Comment: Accepted for 21st IFAC World Congres

    Lattice dynamical wavelet neural networks implemented using particle swarm optimization for spatio-temporal system identification

    No full text
    In this brief, by combining an efficient wavelet representation with a coupled map lattice model, a new family of adaptive wavelet neural networks, called lattice dynamical wavelet neural networks (LDWNNs), is introduced for spatio-temporal system identification. A new orthogonal projection pursuit (OPP) method, coupled with a particle swarm optimization (PSO) algorithm, is proposed for augmenting the proposed network. A novel two-stage hybrid training scheme is developed for constructing a parsimonious network model. In the first stage, by applying the OPP algorithm, significant wavelet neurons are adaptively and successively recruited into the network, where adjustable parameters of the associated wavelet neurons are optimized using a particle swarm optimizer. The resultant network model, obtained in the first stage, however, may be redundant. In the second stage, an orthogonal least squares algorithm is then applied to refine and improve the initially trained network by removing redundant wavelet neurons from the network. An example for a real spatio-temporal system identification problem is presented to demonstrate the performance of the proposed new modeling framework
    • …
    corecore