6,622 research outputs found

    Transfer learning in ECG classification from human to horse using a novel parallel neural network architecture

    Get PDF
    Automatic or semi-automatic analysis of the equine electrocardiogram (eECG) is currently not possible because human or small animal ECG analysis software is unreliable due to a different ECG morphology in horses resulting from a different cardiac innervation. Both filtering, beat detection to classification for eECGs are currently poorly or not described in the literature. There are also no public databases available for eECGs as is the case for human ECGs. In this paper we propose the use of wavelet transforms for both filtering and QRS detection in eECGs. In addition, we propose a novel robust deep neural network using a parallel convolutional neural network architecture for ECG beat classification. The network was trained and tested using both the MIT-BIH arrhythmia and an own made eECG dataset with 26.440 beats on 4 classes: normal, premature ventricular contraction, premature atrial contraction and noise. The network was optimized using a genetic algorithm and an accuracy of 97.7% and 92.6% was achieved for the MIT-BIH and eECG database respectively. Afterwards, transfer learning from the MIT-BIH dataset to the eECG database was applied after which the average accuracy, recall, positive predictive value and F1 score of the network increased with an accuracy of 97.1%

    Is "Better Data" Better than "Better Data Miners"? (On the Benefits of Tuning SMOTE for Defect Prediction)

    Full text link
    We report and fix an important systematic error in prior studies that ranked classifiers for software analytics. Those studies did not (a) assess classifiers on multiple criteria and they did not (b) study how variations in the data affect the results. Hence, this paper applies (a) multi-criteria tests while (b) fixing the weaker regions of the training data (using SMOTUNED, which is a self-tuning version of SMOTE). This approach leads to dramatically large increases in software defect predictions. When applied in a 5*5 cross-validation study for 3,681 JAVA classes (containing over a million lines of code) from open source systems, SMOTUNED increased AUC and recall by 60% and 20% respectively. These improvements are independent of the classifier used to predict for quality. Same kind of pattern (improvement) was observed when a comparative analysis of SMOTE and SMOTUNED was done against the most recent class imbalance technique. In conclusion, for software analytic tasks like defect prediction, (1) data pre-processing can be more important than classifier choice, (2) ranking studies are incomplete without such pre-processing, and (3) SMOTUNED is a promising candidate for pre-processing.Comment: 10 pages + 2 references. Accepted to International Conference of Software Engineering (ICSE), 201

    A systematic review of data quality issues in knowledge discovery tasks

    Get PDF
    Hay un gran crecimiento en el volumen de datos porque las organizaciones capturan permanentemente la cantidad colectiva de datos para lograr un mejor proceso de toma de decisiones. El desafío mas fundamental es la exploración de los grandes volúmenes de datos y la extracción de conocimiento útil para futuras acciones por medio de tareas para el descubrimiento del conocimiento; sin embargo, muchos datos presentan mala calidad. Presentamos una revisión sistemática de los asuntos de calidad de datos en las áreas del descubrimiento de conocimiento y un estudio de caso aplicado a la enfermedad agrícola conocida como la roya del café.Large volume of data is growing because the organizations are continuously capturing the collective amount of data for better decision-making process. The most fundamental challenge is to explore the large volumes of data and extract useful knowledge for future actions through knowledge discovery tasks, nevertheless many data has poor quality. We presented a systematic review of the data quality issues in knowledge discovery tasks and a case study applied to agricultural disease named coffee rust

    Is "Better Data" Better than "Better Data Miners"? (On the Benefits of Tuning SMOTE for Defect Prediction)

    Full text link
    We report and fix an important systematic error in prior studies that ranked classifiers for software analytics. Those studies did not (a) assess classifiers on multiple criteria and they did not (b) study how variations in the data affect the results. Hence, this paper applies (a) multi-criteria tests while (b) fixing the weaker regions of the training data (using SMOTUNED, which is a self-tuning version of SMOTE). This approach leads to dramatically large increases in software defect predictions. When applied in a 5*5 cross-validation study for 3,681 JAVA classes (containing over a million lines of code) from open source systems, SMOTUNED increased AUC and recall by 60% and 20% respectively. These improvements are independent of the classifier used to predict for quality. Same kind of pattern (improvement) was observed when a comparative analysis of SMOTE and SMOTUNED was done against the most recent class imbalance technique. In conclusion, for software analytic tasks like defect prediction, (1) data pre-processing can be more important than classifier choice, (2) ranking studies are incomplete without such pre-processing, and (3) SMOTUNED is a promising candidate for pre-processing.Comment: 10 pages + 2 references. Accepted to International Conference of Software Engineering (ICSE), 201

    Learning to Auto Weight: Entirely Data-driven and Highly Efficient Weighting Framework

    Full text link
    Example weighting algorithm is an effective solution to the training bias problem, however, most previous typical methods are usually limited to human knowledge and require laborious tuning of hyperparameters. In this paper, we propose a novel example weighting framework called Learning to Auto Weight (LAW). The proposed framework finds step-dependent weighting policies adaptively, and can be jointly trained with target networks without any assumptions or prior knowledge about the dataset. It consists of three key components: Stage-based Searching Strategy (3SM) is adopted to shrink the huge searching space in a complete training process; Duplicate Network Reward (DNR) gives more accurate supervision by removing randomness during the searching process; Full Data Update (FDU) further improves the updating efficiency. Experimental results demonstrate the superiority of weighting policy explored by LAW over standard training pipeline. Compared with baselines, LAW can find a better weighting schedule which achieves much more superior accuracy on both biased CIFAR and ImageNet.Comment: Accepted by AAAI 202

    Spatial Filtering Pipeline Evaluation of Cortically Coupled Computer Vision System for Rapid Serial Visual Presentation

    Get PDF
    Rapid Serial Visual Presentation (RSVP) is a paradigm that supports the application of cortically coupled computer vision to rapid image search. In RSVP, images are presented to participants in a rapid serial sequence which can evoke Event-related Potentials (ERPs) detectable in their Electroencephalogram (EEG). The contemporary approach to this problem involves supervised spatial filtering techniques which are applied for the purposes of enhancing the discriminative information in the EEG data. In this paper we make two primary contributions to that field: 1) We propose a novel spatial filtering method which we call the Multiple Time Window LDA Beamformer (MTWLB) method; 2) we provide a comprehensive comparison of nine spatial filtering pipelines using three spatial filtering schemes namely, MTWLB, xDAWN, Common Spatial Pattern (CSP) and three linear classification methods Linear Discriminant Analysis (LDA), Bayesian Linear Regression (BLR) and Logistic Regression (LR). Three pipelines without spatial filtering are used as baseline comparison. The Area Under Curve (AUC) is used as an evaluation metric in this paper. The results reveal that MTWLB and xDAWN spatial filtering techniques enhance the classification performance of the pipeline but CSP does not. The results also support the conclusion that LR can be effective for RSVP based BCI if discriminative features are available

    SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary

    Get PDF
    The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm is considered \de facto" standard in the framework of learning from imbalanced data. This is due to its simplicity in the design of the procedure, as well as its robustness when applied to di erent type of problems. Since its publication in 2002, SMOTE has proven successful in a variety of applications from several di erent domains. SMOTE has also inspired several approaches to counter the issue of class imbalance, and has also signi cantly contributed to new supervised learning paradigms, including multilabel classi cation, incremental learning, semi-supervised learning, multi-instance learning, among others. It is standard benchmark for learning from imbalanced data. It is also featured in a number of di erent software packages | from open source to commercial. In this paper, marking the fteen year anniversary of SMOTE, we re ect on the SMOTE journey, discuss the current state of a airs with SMOTE, its applications, and also identify the next set of challenges to extend SMOTE for Big Data problems.This work have been partially supported by the Spanish Ministry of Science and Technology under projects TIN2014-57251-P, TIN2015-68454-R and TIN2017-89517-P; the Project 887 BigDaP-TOOLS - Ayudas Fundaci on BBVA a Equipos de Investigaci on Cient ca 2016; and the National Science Foundation (NSF) Grant IIS-1447795
    corecore