19 research outputs found

    Digital Multimedia Forensics and Anti-Forensics

    Get PDF
    As the use of digital multimedia content such as images and video has increased, so has the means and the incentive to create digital forgeries. Presently, powerful editing software allows forgers to create perceptually convincing digital forgeries. Accordingly, there is a great need for techniques capable of authenticating digital multimedia content. In response to this, researchers have begun developing digital forensic techniques capable of identifying digital forgeries. These forensic techniques operate by detecting imperceptible traces left by editing operations in digital multimedia content. In this dissertation, we propose several new digital forensic techniques to detect evidence of editing in digital multimedia content. We begin by identifying the fingerprints left by pixel value mappings and show how these can be used to detect the use of contrast enhancement in images. We use these fingerprints to perform a number of additional forensic tasks such as identifying cut-and-paste forgeries, detecting the addition of noise to previously JPEG compressed images, and estimating the contrast enhancement mapping used to alter an image. Additionally, we consider the problem of multimedia security from the forger's point of view. We demonstrate that an intelligent forger can design anti-forensic operations to hide editing fingerprints and fool forensic techniques. We propose an anti-forensic technique to remove compression fingerprints from digital images and show that this technique can be used to fool several state-of-the-art forensic algorithms. We examine the problem of detecting frame deletion in digital video and develop both a technique to detect frame deletion and an anti-forensic technique to hide frame deletion fingerprints. We show that this anti-forensic operation leaves behind fingerprints of its own and propose a technique to detect the use of frame deletion anti-forensics. The ability of a forensic investigator to detect both editing and the use of anti-forensics results in a dynamic interplay between the forger and forensic investigator. We use develop a game theoretic framework to analyze this interplay and identify the set of actions that each party will rationally choose. Additionally, we show that anti-forensics can be used protect against reverse engineering. To demonstrate this, we propose an anti-forensic module that can be integrated into digital cameras to protect color interpolation methods

    Development of Novel Image Compression Algorithms for Portable Multimedia Applications

    Get PDF
    Portable multimedia devices such as digital camera, mobile d evices, personal digtal assistants (PDAs), etc. have limited memory, battery life and processing power. Real time processing and transmission using these devices requires image compression algorithms that can compress efficiently with reduced complexity. Due to limited resources, it is not always possible to implement the best algorithms inside these devices. In uncompressed form, both raw and image data occupy an unreasonably large space. However, both raw and image data have a significant amount of statistical and visual redundancy. Consequently, the used storage space can be efficiently reduced by compression. In this thesis, some novel low complexity and embedded image compression algorithms are developed especially suitable for low bit rate image compression using these devices. Despite the rapid progress in the Internet and multimedia technology, demand for data storage and data transmission bandwidth continues to outstrip the capabil- ities of available technology. The browsing of images over In ternet from the image data sets using these devices requires fast encoding and decodin g speed with better rate-distortion performance. With progressive picture build up of the wavelet based coded images, the recent multimedia applications demand goo d quality images at the earlier stages of transmission. This is particularly important if the image is browsed over wireless lines where limited channel capacity, storage and computation are the deciding parameters. Unfortunately, the performance of JPEG codec degrades at low bit rates because of underlying block based DCT transforms. Altho ugh wavelet based codecs provide substantial improvements in progressive picture quality at lower bit rates, these coders do not fully exploit the coding performance at lower bit rates. It is evident from the statistics of transformed images that the number of significant coefficients having magnitude higher than earlier thresholds are very few. These wavelet based codecs code zero to each insignificant subband as it moves from coarsest to finest subbands. It is also demonstrated that there could be six to sev en bit plane passes where wavelet coders encode many zeros as many subbands are likely to be insignificant with respect to early thresholds. Bits indicating insignificance of a coefficient or subband are required, but they don’t code information that reduces distortion of the reconstructed image. This leads to reduction of zero distortion for an increase in non zero bit-rate. Another problem associated with wavelet based coders such as Set partitioning in hierarchical trees (SPIHT), Set partitioning embedded block (SPECK), Wavelet block-tree coding (WBTC) is because of the use of auxiliary lists. The size of list data structures increase exponentially as more and more eleme nts are added, removed or moved in each bitplane pass. This increases the dynamic memory requirement of the codec, which is a less efficient feature for hardware implementations. Later, many listless variants of SPIHT and SPECK, e.g. No list SPIHT (NLS) and Listless SPECK (LSK) respectively are developed. However, these algorithms have similar rate distortion performances, like the list based coders. An improved LSK (ILSK)algorithm proposed in this dissertation that improves the low b it rate performance of LSK by encoding much lesser number of symbols (i.e. zeros) to several insignificant subbands. Further, the ILSK is combined with a block based transform known as discrete Tchebichef transform (DTT). The proposed new coder isnamed as Hierar-chical listless DTT (HLDTT). DTT is chosen over DCT because of it’s similar energy compaction property like discrete cosine transform (DCT). It is demonstrated that the decoded image quality using HLDTT has better visual performance (i.e., Mean Structural Similarity) than the images decoded using DCT based embedded coders in most of the bit rates. The ILSK algorithm is also combined with Lift based wavelet tra nsform to show the superiority over JPEG2000 at lower rates in terms of peak signal-to-noise ratio (PSNR). A full-scalable and random access decodable listless algorithm is also developed which is based on lift based ILSK. The proposed algorithm named as scalable listless embedded block partitioning (S-LEBP) generates bit stream that offer increasing signal-to-noise ratio and spatial resolution. These are very useful features for transmission of images in a heterogeneous network that optimally service each user according to available bandwidth and computing needs. Random access decoding is a very useful feature for extracting/manipulating certain ar ea of an image with minimal decoding work. The idea used in ILSK is also extended to encode and decode color images. The proposed algorithm for coding color images is named as Color listless embedded block partitioning (CLEBP) algorithm. The coding efficiency of CLEBP is compared with Color SPIHT (CSPIHT) and color variant of WBTC algorithm. From the simulation results, it is shown that CLEBP exhibits a significant PSNR performance improvement over the later two algorithms on various types of images. Although many modifications to NLS and LSK have been made, the listless modification to WBTC algorithm has not been reported in the literature. Therefore,a listless variant of WBTC (named as LBTC) algorithm is proposed. LBTC not only reduces the memory requirement by 88-89% but also increases the encoding and decoding speed, while preserving the rate-distortion perform ance at the same time. Further, the combination of DCT with LBTC (named as DCT LBT) and DTT with LBTC (named as Hierarchical listless DTT, HLBTDTT) are compared with some state-of-the-art DCT based embedded coders. It is also shown that the proposed DCT-LBT and HLBT-DTT show significant PSNR improvements over almost all the embedded coders in most of the bit rates. In some multimedia applications e.g., digital camera, camco rders etc., the images always need to have a fixed pre-determined high quality. The extra effort required for quality scalability is wasted. Therefore, non-embedded algo rithms are best suited for these applications. The proposed algorithms can be made non-embedded by encoding a fixed set of bit planes at a time. Instead, a sparse orthogonal transform matrix is proposed, which can be integrated in a JEPG baseline coder. The proposed matrix promises a substantial reduction in hardware complexity with amarginal loss of image quality on a considerable range of bit rates than block based DCT or Integer DCT

    Efficient compression of motion compensated residuals

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Efficient reconfigurable architectures for 3D medical image compression

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In these fields, medical image compression is important since both efficient storage and transmission of data through high-bandwidth digital communication lines are of crucial importance. Despite their advantages, most 3-D medical imaging algorithms are computationally intensive with matrix transformation as the most fundamental operation involved in the transform-based methods. Therefore, there is a real need for high-performance systems, whilst keeping architectures exible to allow for quick upgradeability with real-time applications. Moreover, in order to obtain efficient solutions for large medical volumes data, an efficient implementation of these operations is of significant importance. Reconfigurable hardware, in the form of field programmable gate arrays (FPGAs) has been proposed as viable system building block in the construction of high-performance systems at an economical price. Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent advantages such as massive parallelism capabilities, multimillion gate counts, and special low-power packages. The key achievements of the work presented in this thesis are summarised as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been proposed based on transpose-based computation and partial reconfiguration suitable for 3-D medical imaging applications. These applications require continuous hardware servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced. Comparative study for both non-partial and partial reconfiguration implementation has shown that DPR offers many advantages and leads to a compelling solution for implementing computationally intensive applications such as 3-D medical image compression. Using DPR, several large systems are mapped to small hardware resources, and the area, power consumption as well as maximum frequency are optimised and improved. Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)with three design strategies has been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)- based method. An analysis with various medical imaging modalities has been carried out. Results obtained for image de-noising implementation using FRAT exhibits promising results in reducing Gaussian white noise in medical images. In terms of hardware implementation, promising trade-offs on maximum frequency, throughput and area are also achieved. Furthermore, a novel hardware implementation of 3-D medical image compression system with context-based adaptive variable length coding (CAVLC) has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that 3-D IT demonstrates better computational complexity than the 3-D DWT, whilst the 3-D DWT with LS exhibits a lossless compression that is significantly useful for medical image compression. Additionally, an architecture of CAVLC that is capable of compressing high-definition (HD) images in real-time without any buffer between the quantiser and the entropy coder is proposed. Through a judicious parallelisation, promising results have been obtained with limited resources. In summary, this research is tackling the issues of massive 3-D medical volumes data that requires compression as well as hardware implementation to accelerate the slowest operations in the system. Results obtained also reveal a significant achievement in terms of the architecture efficiency and applications performance.Ministry of Higher Education Malaysia (MOHE), Universiti Tun Hussein Onn Malaysia (UTHM) and the British Counci

    Dense light field coding: a survey

    Get PDF
    Light Field (LF) imaging is a promising solution for providing more immersive and closer to reality multimedia experiences to end-users with unprecedented creative freedom and flexibility for applications in different areas, such as virtual and augmented reality. Due to the recent technological advances in optics, sensor manufacturing and available transmission bandwidth, as well as the investment of many tech giants in this area, it is expected that soon many LF transmission systems will be available to both consumers and professionals. Recognizing this, novel standardization initiatives have recently emerged in both the Joint Photographic Experts Group (JPEG) and the Moving Picture Experts Group (MPEG), triggering the discussion on the deployment of LF coding solutions to efficiently handle the massive amount of data involved in such systems. Since then, the topic of LF content coding has become a booming research area, attracting the attention of many researchers worldwide. In this context, this paper provides a comprehensive survey of the most relevant LF coding solutions proposed in the literature, focusing on angularly dense LFs. Special attention is placed on a thorough description of the different LF coding methods and on the main concepts related to this relevant area. Moreover, comprehensive insights are presented into open research challenges and future research directions for LF coding.info:eu-repo/semantics/publishedVersio

    Efficient architectures for multidimensional discrete transforms in image and video processing applications

    Get PDF
    PhD ThesisThis thesis introduces new image compression algorithms, their related architectures and data transforms architectures. The proposed architectures consider the current hardware architectures concerns, such as power consumption, hardware usage, memory requirement, computation time and output accuracy. These concerns and problems are crucial in multidimensional image and video processing applications. This research is divided into three image and video processing related topics: low complexity non-transform-based image compression algorithms and their architectures, architectures for multidimensional Discrete Cosine Transform (DCT); and architectures for multidimensional Discrete Wavelet Transform (DWT). The proposed architectures are parameterised in terms of wordlength, pipelining and input data size. Taking such parameterisation into account, efficient non-transform based and low complexity image compression algorithms for better rate distortion performance are proposed. The proposed algorithms are based on the Adaptive Quantisation Coding (AQC) algorithm, and they achieve a controllable output bit rate and accuracy by considering the intensity variation of each image block. Their high speed, low hardware usage and low power consumption architectures are also introduced and implemented on Xilinx devices. Furthermore, efficient hardware architectures for multidimensional DCT based on the 1-D DCT Radix-2 and 3-D DCT Vector Radix (3-D DCT VR) fast algorithms have been proposed. These architectures attain fast and accurate 3-D DCT computation and provide high processing speed and power consumption reduction. In addition, this research also introduces two low hardware usage 3-D DCT VR architectures. Such architectures perform the computation of butterfly and post addition stages without using block memory for data transposition, which in turn reduces the hardware usage and improves the performance of the proposed architectures. Moreover, parallel and multiplierless lifting-based architectures for the 1-D, 2-D and 3-D Cohen-Daubechies-Feauveau 9/7 (CDF 9/7) DWT computation are also introduced. The presented architectures represent an efficient multiplierless and low memory requirement CDF 9/7 DWT computation scheme using the separable approach. Furthermore, the proposed architectures have been implemented and tested using Xilinx FPGA devices. The evaluation results have revealed that a speed of up to 315 MHz can be achieved in the proposed AQC-based architectures. Further, a speed of up to 330 MHz and low utilisation rate of 722 to 1235 can be achieved in the proposed 3-D DCT VR architectures. In addition, in the proposed 3-D DWT architecture, the computation time of 3-D DWT for data size of 144×176×8-pixel is less than 0.33 ms. Also, a power consumption of 102 mW at 50 MHz clock frequency using 256×256-pixel frame size is achieved. The accuracy tests for all architectures have revealed that a PSNR of infinite can be attained

    Compression et transmission d'images avec énergie minimale application aux capteurs sans fil

    Get PDF
    Un réseau de capteurs d'images sans fil (RCISF) est un réseau ad hoc formé d'un ensemble de noeuds autonomes dotés chacun d'une petite caméra, communiquant entre eux sans liaison filaire et sans l'utilisation d'une infrastructure établie, ni d'une gestion de réseau centralisée. Leur utilité semble majeure dans plusieurs domaines, notamment en médecine et en environnement. La conception d'une chaîne de compression et de transmission sans fil pour un RCISF pose de véritables défis. L'origine de ces derniers est liée principalement à la limitation des ressources des capteurs (batterie faible , capacité de traitement et mémoire limitées). L'objectif de cette thèse consiste à explorer des stratégies permettant d'améliorer l'efficacité énergétique des RCISF, notamment lors de la compression et de la transmission des images. Inéluctablement, l'application des normes usuelles telles que JPEG ou JPEG2000 est éner- givore, et limite ainsi la longévité des RCISF. Cela nécessite leur adaptation aux contraintes imposées par les RCISF. Pour cela, nous avons analysé en premier lieu, la faisabilité d'adapter JPEG au contexte où les ressources énergétiques sont très limitées. Les travaux menés sur cet aspect nous permettent de proposer trois solutions. La première solution est basée sur la propriété de compactage de l'énergie de la Transformée en Cosinus Discrète (TCD). Cette propriété permet d'éliminer la redondance dans une image sans trop altérer sa qualité, tout en gagnant en énergie. La réduction de l'énergie par l'utilisation des régions d'intérêts représente la deuxième solution explorée dans cette thèse. Finalement, nous avons proposé un schéma basé sur la compression et la transmission progressive, permettant ainsi d'avoir une idée générale sur l'image cible sans envoyer son contenu entier. En outre, pour une transmission non énergivore, nous avons opté pour la solution suivante. N'envoyer fiablement que les basses fréquences et les régions d'intérêt d'une image. Les hautes fréquences et les régions de moindre intérêt sont envoyées""infiablement"", car leur pertes n'altèrent que légèrement la qualité de l'image. Pour cela, des modèles de priorisation ont été comparés puis adaptés à nos besoins. En second lieu, nous avons étudié l'approche par ondelettes (wavelets ). Plus précisément, nous avons analysé plusieurs filtres d'ondelettes et déterminé les ondelettes les plus adéquates pour assurer une faible consommation en énergie, tout en gardant une bonne qualité de l'image reconstruite à la station de base. Pour estimer l'énergie consommée par un capteur durant chaque étape de la 'compression, un modèle mathématique est développé pour chaque transformée (TCD ou ondelette). Ces modèles, qui ne tiennent pas compte de la complexité de l'implémentation, sont basés sur le nombre d'opérations de base exécutées à chaque étape de la compression

    Error Correction and Concealment of Bock Based, Motion-Compensated Temporal Predition, Transform Coded Video

    Get PDF
    Error Correction and Concealment of Block Based, Motion-Compensated Temporal Prediction, Transform Coded Video David L. Robie 133 Pages Directed by Dr. Russell M. Mersereau The use of the Internet and wireless networks to bring multimedia to the consumer continues to expand. The transmission of these products is always subject to corruption due to errors such as bit errors or lost and ill-timed packets; however, in many cases, such as real time video transmission, retransmission request (ARQ) is not practical. Therefore receivers must be capable of recovering from corrupted data. Errors can be mitigated using forward error correction in the encoder or error concealment techniques in the decoder. This thesis investigates the use of forward error correction (FEC) techniques in the encoder and error concealment in the decoder in block-based, motion-compensated, temporal prediction, transform codecs. It will show improvement over standard FEC applications and improvements in error concealment relative to the Motion Picture Experts Group (MPEG) standard. To this end, this dissertation will describe the following contributions and proofs-of-concept in the area of error concealment and correction in block-based video transmission. A temporal error concealment algorithm which uses motion-compensated macroblocks from previous frames. A spatial error concealment algorithm which uses the Hough transform to detect edges in both foreground and background colors and using directional interpolation or directional filtering to provide improved edge reproduction. A codec which uses data hiding to transmit error correction information. An enhanced codec which builds upon the last by improving the performance of the codec in the error-free environment while maintaining excellent error recovery capabilities. A method to allocate Reed-Solomon (R-S) packet-based forward error correction that will decrease distortion (using a PSNR metric) at the receiver compared to standard FEC techniques. Finally, under the constraints of a constant bit rate, the tradeoff between traditional R-S FEC and alternate forward concealment information (FCI) is evaluated. Each of these developments is compared and contrasted to state of the art techniques and are able to show improvements using widely accepted metrics. The dissertation concludes with a discussion of future work.Ph.D.Committee Chair: Mersereau, Russell; Committee Member: Altunbasak, Yucel; Committee Member: Fekri, Faramarz; Committee Member: Lanterman, Aaron; Committee Member: Zhou, Haomi

    Compression of 4D medical image and spatial segmentation using deformable models

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore