17,947 research outputs found

    High-rate, high-fidelity entanglement of qubits across an elementary quantum network

    Full text link
    We demonstrate remote entanglement of trapped-ion qubits via a quantum-optical fiber link with fidelity and rate approaching those of local operations. Two 88{}^{88}Sr+{}^{+} qubits are entangled via the polarization degree of freedom of two photons which are coupled by high-numerical-aperture lenses into single-mode optical fibers and interfere on a beamsplitter. A novel geometry allows high-efficiency photon collection while maintaining unit fidelity for ion-photon entanglement. We generate remote Bell pairs with fidelity F=0.940(5)F=0.940(5) at an average rate 182 s−1182\,\mathrm{s}^{-1} (success probability 2.18×10−42.18\times10^{-4}).Comment: v2 updated to include responses to reviewers, as published in PR

    Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment

    Full text link
    We develop a theoretical analysis of four-wave mixing used to generate photon pairs useful for quantum information processing. The analysis applies to a single mode microstructured fibre pumped by an ultra-short coherent pulse in the normal dispersion region. Given the values of the optical propagation constant inside the fibre, we can estimate the created number of photon pairs per pulse, their central wavelength and their respective bandwidth. We use the experimental results from a picosecond source of correlated photon pairs using a micro-structured fibre to validate the model. The fibre is pumped in the normal dispersion regime at 708nm and phase matching is satisfied for widely spaced parametric wavelengths of 586nm and 894nm. We measure the number of photons per pulse using a loss-independent coincidence scheme and compare the results with the theoretical expectation. We show a good agreement between the theoretical expectations and the experimental results for various fibre lengths and pump powers.Comment: 23 pages, 9 figure

    Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip

    Full text link
    An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this strong coupling regime of cavity quantum electrodynamics (cQED) has been the subject of spectacular experimental advances, and great efforts have been made to control the coupling rate by trapping and cooling the atom towards the motional ground state, which has been achieved in one dimension so far. For N atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs), but although first experiments combining BECs and optical cavities have been reported recently, coupling BECs to strong-coupling cavities has remained an elusive goal. Here we report such an experiment, which is made possible by combining a new type of fibre-based cavity with atom chip technology. This allows single-atom cQED experiments with a simplified setup and realizes the new situation of N atoms in a cavity each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field. This gives rise to a controlled, tunable coupling rate, as we confirm experimentally. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting which we attribute to the atomic hyperfine structure.Comment: 20 pages. Revised version following referees' comments. Detailed notes adde
    • …
    corecore