62 research outputs found

    An ontology for human-like interaction systems

    Get PDF
    This report proposes and describes the development of a Ph.D. Thesis aimed at building an ontological knowledge model supporting Human-Like Interaction systems. The main function of such knowledge model in a human-like interaction system is to unify the representation of each concept, relating it to the appropriate terms, as well as to other concepts with which it shares semantic relations. When developing human-like interactive systems, the inclusion of an ontological module can be valuable for both supporting interaction between participants and enabling accurate cooperation of the diverse components of such an interaction system. On one hand, during human communication, the relation between cognition and messages relies in formalization of concepts, linked to terms (or words) in a language that will enable its utterance (at the expressive layer). Moreover, each participant has a unique conceptualization (ontology), different from other individual’s. Through interaction, is the intersection of both part’s conceptualization what enables communication. Therefore, for human-like interaction is crucial to have a strong conceptualization, backed by a vast net of terms linked to its concepts, and the ability of mapping it with any interlocutor’s ontology to support denotation. On the other hand, the diverse knowledge models comprising a human-like interaction system (situation model, user model, dialogue model, etc.) and its interface components (natural language processor, voice recognizer, gesture processor, etc.) will be continuously exchanging information during their operation. It is also required for them to share a solid base of references to concepts, providing consistency, completeness and quality to their processing. Besides, humans usually handle a certain range of similar concepts they can use when building messages. The subject of similarity has been and continues to be widely studied in the fields and literature of computer science, psychology and sociolinguistics. Good similarity measures are necessary for several techniques from these fields such as information retrieval, clustering, data-mining, sense disambiguation, ontology translation and automatic schema matching. Furthermore, the ontological component should also be able to perform certain inferential processes, such as the calculation of semantic similarity between concepts. The principal benefit gained from this procedure is the ability to substitute one concept for another based on a calculation of the similarity of the two, given specific circumstances. From the human’s perspective, the procedure enables referring to a given concept in cases where the interlocutor either does not know the term(s) initially applied to refer that concept, or does not know the concept itself. In the first case, the use of synonyms can do, while in the second one it will be necessary to refer the concept from some other similar (semantically-related) concepts...Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaSecretario: Inés María Galván León.- Secretario: José María Cavero Barca.- Vocal: Yolanda García Rui

    Conceptual Representations for Computational Concept Creation

    Get PDF
    Computational creativity seeks to understand computational mechanisms that can be characterized as creative. The creation of new concepts is a central challenge for any creative system. In this article, we outline different approaches to computational concept creation and then review conceptual representations relevant to concept creation, and therefore to computational creativity. The conceptual representations are organized in accordance with two important perspectives on the distinctions between them. One distinction is between symbolic, spatial and connectionist representations. The other is between descriptive and procedural representations. Additionally, conceptual representations used in particular creative domains, such as language, music, image and emotion, are reviewed separately. For every representation reviewed, we cover the inference it affords, the computational means of building it, and its application in concept creation.Peer reviewe

    Human-Intelligence and Machine-Intelligence Decision Governance Formal Ontology

    Get PDF
    Since the beginning of the human race, decision making and rational thinking played a pivotal role for mankind to either exist and succeed or fail and become extinct. Self-awareness, cognitive thinking, creativity, and emotional magnitude allowed us to advance civilization and to take further steps toward achieving previously unreachable goals. From the invention of wheels to rockets and telegraph to satellite, all technological ventures went through many upgrades and updates. Recently, increasing computer CPU power and memory capacity contributed to smarter and faster computing appliances that, in turn, have accelerated the integration into and use of artificial intelligence (AI) in organizational processes and everyday life. Artificial intelligence can now be found in a wide range of organizational systems including healthcare and medical diagnosis, automated stock trading, robotic production, telecommunications, space explorations, and homeland security. Self-driving cars and drones are just the latest extensions of AI. This thrust of AI into organizations and daily life rests on the AI community’s unstated assumption of its ability to completely replicate human learning and intelligence in AI. Unfortunately, even today the AI community is not close to completely coding and emulating human intelligence into machines. Despite the revolution of digital and technology in the applications level, there has been little to no research in addressing the question of decision making governance in human-intelligent and machine-intelligent (HI-MI) systems. There also exists no foundational, core reference, or domain ontologies for HI-MI decision governance systems. Further, in absence of an expert reference base or body of knowledge (BoK) integrated with an ontological framework, decision makers must rely on best practices or standards that differ from organization to organization and government to government, contributing to systems failure in complex mission critical situations. It is still debatable whether and when human or machine decision capacity should govern or when a joint human-intelligence and machine-intelligence (HI-MI) decision capacity is required in any given decision situation. To address this deficiency, this research establishes a formal, top level foundational ontology of HI-MI decision governance in parallel with a grounded theory based body of knowledge which forms the theoretical foundation of a systemic HI-MI decision governance framework

    Commonsense knowledge acquisition and applications

    Get PDF
    Computers are increasingly expected to make smart decisions based on what humans consider commonsense. This would require computers to understand their environment, including properties of objects in the environment (e.g., a wheel is round), relations between objects (e.g., two wheels are part of a bike, or a bike is slower than a car) and interactions of objects (e.g., a driver drives a car on the road). The goal of this dissertation is to investigate automated methods for acquisition of large-scale, semantically organized commonsense knowledge. Prior state-of-the-art methods to acquire commonsense are either not automated or based on shallow representations. Thus, they cannot produce large-scale, semantically organized commonsense knowledge. To achieve the goal, we divide the problem space into three research directions, constituting our core contributions: 1. Properties of objects: acquisition of properties like hasSize, hasShape, etc. We develop WebChild, a semi-supervised method to compile semantically organized properties. 2. Relationships between objects: acquisition of relations like largerThan, partOf, memberOf, etc. We develop CMPKB, a linear-programming based method to compile comparative relations, and, we develop PWKB, a method based on statistical and logical inference to compile part-whole relations. 3. Interactions between objects: acquisition of activities like drive a car, park a car, etc., with attributes such as temporal or spatial attributes. We develop Knowlywood, a method based on semantic parsing and probabilistic graphical models to compile activity knowledge. Together, these methods result in the construction of a large, clean and semantically organized Commonsense Knowledge Base that we call WebChild KB.Von Computern wird immer mehr erwartet, dass sie kluge Entscheidungen treffen können, basierend auf Allgemeinwissen. Dies setzt voraus, dass Computer ihre Umgebung, einschließlich der Eigenschaften von Objekten (z. B. das Rad ist rund), Beziehungen zwischen Objekten (z. B. ein Fahrrad hat zwei Räder, ein Fahrrad ist langsamer als ein Auto) und Interaktionen von Objekten (z. B. ein Fahrer fährt ein Auto auf der Straße), verstehen können. Das Ziel dieser Dissertation ist es, automatische Methoden für die Erfassung von großmaßstäblichem, semantisch organisiertem Allgemeinwissen zu schaffen. Dies ist schwierig aufgrund folgender Eigenschaften des Allgemeinwissens. Es ist: (i) implizit und spärlich, da Menschen nicht explizit das Offensichtliche ausdrücken, (ii) multimodal, da es über textuelle und visuelle Inhalte verteilt ist, (iii) beeinträchtigt vom Einfluss des Berichtenden, da ungewöhnliche Fakten disproportional häufig berichtet werden, (iv) Kontextabhängig, und hat aus diesem Grund eine eingeschränkte statistische Konfidenz. Vorherige Methoden, auf diesem Gebiet sind entweder nicht automatisiert oder basieren auf flachen Repräsentationen. Daher können sie kein großmaßstäbliches, semantisch organisiertes Allgemeinwissen erzeugen. Um unser Ziel zu erreichen, teilen wir den Problemraum in drei Forschungsrichtungen, welche den Hauptbeitrag dieser Dissertation formen: 1. Eigenschaften von Objekten: Erfassung von Eigenschaften wie hasSize, hasShape, usw. Wir entwickeln WebChild, eine halbüberwachte Methode zum Erfassen semantisch organisierter Eigenschaften. 2. Beziehungen zwischen Objekten: Erfassung von Beziehungen wie largerThan, partOf, memberOf, usw. Wir entwickeln CMPKB, eine Methode basierend auf linearer Programmierung um vergleichbare Beziehungen zu erfassen. Weiterhin entwickeln wir PWKB, eine Methode basierend auf statistischer und logischer Inferenz welche zugehörigkeits Beziehungen erfasst. 3. Interaktionen zwischen Objekten: Erfassung von Aktivitäten, wie drive a car, park a car, usw. mit temporalen und räumlichen Attributen. Wir entwickeln Knowlywood, eine Methode basierend auf semantischem Parsen und probabilistischen grafischen Modellen um Aktivitätswissen zu erfassen. Als Resultat dieser Methoden erstellen wir eine große, saubere und semantisch organisierte Allgemeinwissensbasis, welche wir WebChild KB nennen

    Commonsense knowledge acquisition and applications

    Get PDF
    Computers are increasingly expected to make smart decisions based on what humans consider commonsense. This would require computers to understand their environment, including properties of objects in the environment (e.g., a wheel is round), relations between objects (e.g., two wheels are part of a bike, or a bike is slower than a car) and interactions of objects (e.g., a driver drives a car on the road). The goal of this dissertation is to investigate automated methods for acquisition of large-scale, semantically organized commonsense knowledge. Prior state-of-the-art methods to acquire commonsense are either not automated or based on shallow representations. Thus, they cannot produce large-scale, semantically organized commonsense knowledge. To achieve the goal, we divide the problem space into three research directions, constituting our core contributions: 1. Properties of objects: acquisition of properties like hasSize, hasShape, etc. We develop WebChild, a semi-supervised method to compile semantically organized properties. 2. Relationships between objects: acquisition of relations like largerThan, partOf, memberOf, etc. We develop CMPKB, a linear-programming based method to compile comparative relations, and, we develop PWKB, a method based on statistical and logical inference to compile part-whole relations. 3. Interactions between objects: acquisition of activities like drive a car, park a car, etc., with attributes such as temporal or spatial attributes. We develop Knowlywood, a method based on semantic parsing and probabilistic graphical models to compile activity knowledge. Together, these methods result in the construction of a large, clean and semantically organized Commonsense Knowledge Base that we call WebChild KB.Von Computern wird immer mehr erwartet, dass sie kluge Entscheidungen treffen können, basierend auf Allgemeinwissen. Dies setzt voraus, dass Computer ihre Umgebung, einschließlich der Eigenschaften von Objekten (z. B. das Rad ist rund), Beziehungen zwischen Objekten (z. B. ein Fahrrad hat zwei Räder, ein Fahrrad ist langsamer als ein Auto) und Interaktionen von Objekten (z. B. ein Fahrer fährt ein Auto auf der Straße), verstehen können. Das Ziel dieser Dissertation ist es, automatische Methoden für die Erfassung von großmaßstäblichem, semantisch organisiertem Allgemeinwissen zu schaffen. Dies ist schwierig aufgrund folgender Eigenschaften des Allgemeinwissens. Es ist: (i) implizit und spärlich, da Menschen nicht explizit das Offensichtliche ausdrücken, (ii) multimodal, da es über textuelle und visuelle Inhalte verteilt ist, (iii) beeinträchtigt vom Einfluss des Berichtenden, da ungewöhnliche Fakten disproportional häufig berichtet werden, (iv) Kontextabhängig, und hat aus diesem Grund eine eingeschränkte statistische Konfidenz. Vorherige Methoden, auf diesem Gebiet sind entweder nicht automatisiert oder basieren auf flachen Repräsentationen. Daher können sie kein großmaßstäbliches, semantisch organisiertes Allgemeinwissen erzeugen. Um unser Ziel zu erreichen, teilen wir den Problemraum in drei Forschungsrichtungen, welche den Hauptbeitrag dieser Dissertation formen: 1. Eigenschaften von Objekten: Erfassung von Eigenschaften wie hasSize, hasShape, usw. Wir entwickeln WebChild, eine halbüberwachte Methode zum Erfassen semantisch organisierter Eigenschaften. 2. Beziehungen zwischen Objekten: Erfassung von Beziehungen wie largerThan, partOf, memberOf, usw. Wir entwickeln CMPKB, eine Methode basierend auf linearer Programmierung um vergleichbare Beziehungen zu erfassen. Weiterhin entwickeln wir PWKB, eine Methode basierend auf statistischer und logischer Inferenz welche zugehörigkeits Beziehungen erfasst. 3. Interaktionen zwischen Objekten: Erfassung von Aktivitäten, wie drive a car, park a car, usw. mit temporalen und räumlichen Attributen. Wir entwickeln Knowlywood, eine Methode basierend auf semantischem Parsen und probabilistischen grafischen Modellen um Aktivitätswissen zu erfassen. Als Resultat dieser Methoden erstellen wir eine große, saubere und semantisch organisierte Allgemeinwissensbasis, welche wir WebChild KB nennen

    Development of linguistic linked open data resources for collaborative data-intensive research in the language sciences

    Get PDF
    Making diverse data in linguistics and the language sciences open, distributed, and accessible: perspectives from language/language acquistiion researchers and technical LOD (linked open data) researchers. This volume examines the challenges inherent in making diverse data in linguistics and the language sciences open, distributed, integrated, and accessible, thus fostering wide data sharing and collaboration. It is unique in integrating the perspectives of language researchers and technical LOD (linked open data) researchers. Reporting on both active research needs in the field of language acquisition and technical advances in the development of data interoperability, the book demonstrates the advantages of an international infrastructure for scholarship in the field of language sciences. With contributions by researchers who produce complex data content and scholars involved in both the technology and the conceptual foundations of LLOD (linguistics linked open data), the book focuses on the area of language acquisition because it involves complex and diverse data sets, cross-linguistic analyses, and urgent collaborative research. The contributors discuss a variety of research methods, resources, and infrastructures. Contributors Isabelle Barrière, Nan Bernstein Ratner, Steven Bird, Maria Blume, Ted Caldwell, Christian Chiarcos, Cristina Dye, Suzanne Flynn, Claire Foley, Nancy Ide, Carissa Kang, D. Terence Langendoen, Barbara Lust, Brian MacWhinney, Jonathan Masci, Steven Moran, Antonio Pareja-Lora, Jim Reidy, Oya Y. Rieger, Gary F. Simons, Thorsten Trippel, Kara Warburton, Sue Ellen Wright, Claus Zin
    corecore