62 research outputs found

    Cancer Detection Using Advanced UWB Microwave Technology

    Get PDF
    Medical diagnosis and subsequent treatment efficacy hinge on innovative imaging modalities. Among these, Microwave Imaging (MWI) has emerged as a compelling approach, offering safe and cost-efficient visualization of the human body. This comprehensive research explores the potential of the Huygens principle-based microwave imaging algorithm, specifically focusing on its prowess in cancer, lesion, and infection detection. Extensive experimentation employing meticulously crafted phantoms validates the algorithm’s robustness. In the context of lung infections, this study harnesses the power of Huygens-based microwave imaging to detect lung-COVID-19 infections. Employing Microstrip and horn antennas within a frequency range of 1 to 5 GHz and a multi-bistatic setup in an anechoic chamber, the research utilizes phantoms mimicking human torso dimensions and dielectric properties. Notably, the study achieves a remarkable detection capability, attaining a signal-to-clutter ratio of 7 dB during image reconstruction using S21 signals.A higher SCR ratio indicates better contrast and clarity of the detected inclusion, which is essential for reliable medical imaging. It is noteworthy that this achievement is realized in free space without necessitating coupling liquid, underscoring the algorithm’s practicality. Furthermore, the research delves into the validation of Huygens Principle (HP)-based microwave imaging in detecting intricate lung lesions. Utilizing a meticulously designed multi-layered phantom with characteristics closely mirroring human anatomy, the study spans frequency bands from 0.5 GHz to 3 GHz within an anechoic chamber. The outcomes are compelling, demonstrating consistent lesion detection within reconstructed images. Impressively, the signal-to-clutter ratio post-artifact removal surges to 13.4 dB, affirming the algorithm’s potential in elevating medical imaging precision. To propel the capabilities of MWI further, this research unveils a novel device: 3D microwave imaging rooted in Huygens principle. Leveraging MammoWave device’s capabilities, the study ventures into 3D image reconstruction. Dedicated phantoms housing 3D structured inclusions, each embodying distinct dielectric properties, serve as the experimental bedrock. Through an intricate interplay of data acquisition and processing, the study attains a laudable feat: seamless 3D visualization of inclusions across various z-axis planes, accompanied by minimal dimensional error not exceeding 7.5%. In a parallel exploration, spiral-like measurement configurations enter the spotlight. These configurations, meticulously tailored along the z-axis, yield promising results. The research unveils an innovative approach to reducing measurement time while safeguarding imaging fidelity. Notably, spiral-like measurements achieve a notable 50% reduction in measurement time, albeit with slight trade-offs. Signal-to-clutter ratios experience a modest reduction, and there is a minor increase in dimensional analysis error, which remains within the confines of 3.5%. The research findings serve as a testament to MWI’s efficacy across diverse medical domains. The success in lung infection and lesion detection underscores its potential impact on medical diagnostics. Moreover, the foray into 3D imaging and the strategic exploration of measurement configurations lay the foundation for future advancements in microwave imaging technologies. As a result, the outcomes of this research promise to reshape the landscape of accurate and efficient medical imaging modalities

    Emerging Approaches for THz Array Imaging: A Tutorial Review and Software Tool

    Full text link
    Accelerated by the increasing attention drawn by 5G, 6G, and Internet of Things applications, communication and sensing technologies have rapidly evolved from millimeter-wave (mmWave) to terahertz (THz) in recent years. Enabled by significant advancements in electromagnetic (EM) hardware, mmWave and THz frequency regimes spanning 30 GHz to 300 GHz and 300 GHz to 3000 GHz, respectively, can be employed for a host of applications. The main feature of THz systems is high-bandwidth transmission, enabling ultra-high-resolution imaging and high-throughput communications; however, challenges in both the hardware and algorithmic arenas remain for the ubiquitous adoption of THz technology. Spectra comprising mmWave and THz frequencies are well-suited for synthetic aperture radar (SAR) imaging at sub-millimeter resolutions for a wide spectrum of tasks like material characterization and nondestructive testing (NDT). This article provides a tutorial review of systems and algorithms for THz SAR in the near-field with an emphasis on emerging algorithms that combine signal processing and machine learning techniques. As part of this study, an overview of classical and data-driven THz SAR algorithms is provided, focusing on object detection for security applications and SAR image super-resolution. We also discuss relevant issues, challenges, and future research directions for emerging algorithms and THz SAR, including standardization of system and algorithm benchmarking, adoption of state-of-the-art deep learning techniques, signal processing-optimized machine learning, and hybrid data-driven signal processing algorithms...Comment: Submitted to Proceedings of IEE

    Indoor Positioning and Navigation

    Get PDF
    In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot

    Enabling the Development and Implementation of Digital Twins : Proceedings of the 20th International Conference on Construction Applications of Virtual Reality

    Get PDF
    Welcome to the 20th International Conference on Construction Applications of Virtual Reality (CONVR 2020). This year we are meeting on-line due to the current Coronavirus pandemic. The overarching theme for CONVR2020 is "Enabling the development and implementation of Digital Twins". CONVR is one of the world-leading conferences in the areas of virtual reality, augmented reality and building information modelling. Each year, more than 100 participants from all around the globe meet to discuss and exchange the latest developments and applications of virtual technologies in the architectural, engineering, construction and operation industry (AECO). The conference is also known for having a unique blend of participants from both academia and industry. This year, with all the difficulties of replicating a real face to face meetings, we are carefully planning the conference to ensure that all participants have a perfect experience. We have a group of leading keynote speakers from industry and academia who are covering up to date hot topics and are enthusiastic and keen to share their knowledge with you. CONVR participants are very loyal to the conference and have attended most of the editions over the last eighteen editions. This year we are welcoming numerous first timers and we aim to help them make the most of the conference by introducing them to other participants

    Chipless RFID sensor systems for structural health monitoring

    Get PDF
    Ph. D. ThesisDefects in metallic structures such as crack and corrosion are major sources of catastrophic failures, and thus monitoring them is a crucial issue. As periodic inspection using the nondestructive testing and evaluation (NDT&E) techniques is slow, costly, limited in range, and cumbersome, novel methods for in-situ structural health monitoring (SHM) are required. Chipless radio frequency identification (RFID) is an emerging and attractive technology to implement the internet of things (IoT) based SHM. Chipless RFID sensors are not only wireless, passive, and low-cost as the chipped RFID counterpart, but also printable, durable, and allow for multi-parameter sensing. This thesis proposes the design and development of chipless RFID sensor systems for SHM, particularly for defect detection and characterization in metallic structures. Through simulation studies and experimental validations, novel metal-mountable chipless RFID sensors are demonstrated with different reader configurations and methods for feature extraction, selection, and fusion. The first contribution of this thesis is the design of a chipless RFID sensor for crack detection and characterization based on the circular microstrip patch antenna (CMPA). The sensor provides a 4-bit ID and a capability of indicating crack width and orientation simultaneously using the resonance frequency shift. The second contribution is a chipless RFID sensor designed based on the frequency selective surface (FSS) and feature fusion for corrosion characterization. The FSS-based sensor generates multiple resonance frequency features that can reveal corrosion progression, while feature fusion is applied to enhance the sensitivity and reliability of the sensor. The third contribution deals with robust detection and characterization of crack and corrosion in a realistic environment using a portable reader. A multi-resonance chipless RFID sensor is proposed along with the implementation of a portable reader using an ultra-wideband (UWB) radar module. Feature extraction and selection using principal component analysis (PCA) is employed for multi-parameter evaluation. Overall, chipless RFID sensors are small, low-profile, and can be used to quantify and characterize surface crack and corrosion undercoating. Furthermore, the multi-resonance characteristics of chipless RFID sensors are useful for integrating ID encoding and sensing functionalities, enhancing the sensor performance, as well as for performing multi-parameter analysis of defects. The demonstrated system using a portable reader shows the capability of defects characterization from a 15-cm distance. Hence, chipless RFID sensor systems have great potential to be an alternative sensing method for in-situ SHM.Indonesia Endowment Fund for Education (LPDP

    Европейский и национальный контексты в научных исследованиях

    Get PDF
    Polotsk State University. European and national dimension in research P.1 : HumanitiesTom 1. Predstavleny trudy molodyh uchenyh po gumanitarnym, social'nym i juridicheskim naukam, sportu i turizmu. = Т.1. Представлены труды молодых ученых по гуманитарным, социальным и юридическим наукам, спорту и туризму
    corecore