5,285 research outputs found

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Robust Positioning in the Presence of Multipath and NLOS GNSS Signals

    Get PDF
    GNSS signals can be blocked and reflected by nearby objects, such as buildings, walls, and vehicles. They can also be reflected by the ground and by water. These effects are the dominant source of GNSS positioning errors in dense urban environments, though they can have an impact almost anywhere. Non- line-of-sight (NLOS) reception occurs when the direct path from the transmitter to the receiver is blocked and signals are received only via a reflected path. Multipath interference occurs, as the name suggests, when a signal is received via multiple paths. This can be via the direct path and one or more reflected paths, or it can be via multiple reflected paths. As their error characteristics are different, NLOS and multipath interference typically require different mitigation techniques, though some techniques are applicable to both. Antenna design and advanced receiver signal processing techniques can substantially reduce multipath errors. Unless an antenna array is used, NLOS reception has to be detected using the receiver's ranging and carrier-power-to-noise-density ratio (C/N0) measurements and mitigated within the positioning algorithm. Some NLOS mitigation techniques can also be used to combat severe multipath interference. Multipath interference, but not NLOS reception, can also be mitigated by comparing or combining code and carrier measurements, comparing ranging and C/N0 measurements from signals on different frequencies, and analyzing the time evolution of the ranging and C/N0 measurements

    Low cost underwater acoustic localization

    Full text link
    Over the course of the last decade, the cost of marine robotic platforms has significantly decreased. In part this has lowered the barriers to entry of exploring and monitoring larger areas of the earth's oceans. However, these advances have been mostly focused on autonomous surface vehicles (ASVs) or shallow water autonomous underwater vehicles (AUVs). One of the main drivers for high cost in the deep water domain is the challenge of localizing such vehicles using acoustics. A low cost one-way travel time underwater ranging system is proposed to assist in localizing deep water submersibles. The system consists of location aware anchor buoys at the surface and underwater nodes. This paper presents a comparison of methods together with details on the physical implementation to allow its integration into a deep sea micro AUV currently in development. Additional simulation results show error reductions by a factor of three.Comment: 73rd Meeting of the Acoustical Society of Americ

    On the Adaptivity of Unscented Particle Filter for GNSS/INS Tightly-Integrated Navigation Unit in Urban Environment

    Get PDF
    Tight integration algorithms fusing Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) have become popular in many high-accuracy positioning and navigation applications. Despite their reliability, common integration architectures can still run into accuracy drops under challenging navigation settings. The growing computational power of low-cost, embedded systems has allowed for the exploitation of several advanced Bayesian state estimation algorithms, such as the Particle Filter (PF) and its hybrid variants, e.g. Unscented Particle Filter (UPF). Although sophisticated, these architectures are not immune from multipath scattering and Non-Line-of-Sight (NLOS) signal receptions, which frequently corrupt satellite measurements and jeopardise GNSS/INS solutions. Hence, a certain level of modelling adaptivity should be granted to avoid severe drifts in the estimated states. Given these premises, the paper presents a novel Adaptive Unscented Particle Filter (AUPF) architecture leveraging two cascading stages to cope with disruptive, biased GNSS input observables in harsh conditions. A INS-based signal processing block is implemented upstream of a Redundant Measurement Noise Covariance Estimation (RMNCE) stage to strengthen the adaptation of observables’ statistics and improve the state estimation. An experimental assessment is provided for the proposed robust AUPF that demonstrates a 10 % average reduction of the horizontal position error above the 75-th percentile. In addition, a comparative analysis both with previous adaptive architectures and a plain UPF is carried out to highlight the improved performance of the proposed methodology

    Tightly Coupled 3D Lidar Inertial Odometry and Mapping

    Full text link
    Ego-motion estimation is a fundamental requirement for most mobile robotic applications. By sensor fusion, we can compensate the deficiencies of stand-alone sensors and provide more reliable estimations. We introduce a tightly coupled lidar-IMU fusion method in this paper. By jointly minimizing the cost derived from lidar and IMU measurements, the lidar-IMU odometry (LIO) can perform well with acceptable drift after long-term experiment, even in challenging cases where the lidar measurements can be degraded. Besides, to obtain more reliable estimations of the lidar poses, a rotation-constrained refinement algorithm (LIO-mapping) is proposed to further align the lidar poses with the global map. The experiment results demonstrate that the proposed method can estimate the poses of the sensor pair at the IMU update rate with high precision, even under fast motion conditions or with insufficient features.Comment: Accepted by ICRA 201

    Identification, Calculation and Warning of Horizontal Curves for Low-volume Two-lane Roadways Using Smartphone Sensors

    Get PDF
    Smartphones and other portable personal devices that integrate global positioning systems, Bluetooth Low Energy, and advanced computing technologies have become more accessible due to affordable prices, product innovation, and people’s desire to be connected. As more people own these devices, there are greater opportunities for data acquisition in Intelligent Transportation Systems, and for vehicle-to-infrastructure communication. Horizontal curves are a common factor in the number of observed roadway crashes. Identifying locations and geometric characteristics of the horizontal curves plays a critical role in crash prediction and prevention, and timely curve warnings save lives. However, most states in the US face a challenge to maintain detailed and highquality roadway inventory databases for low volume rural roads due to the laborintensive and time-consuming nature of collecting and maintaining the data. This thesis proposes two smartphone applications C-Finder and C-Alert, to collect two-lane road horizontal curves data (including radius, superelevation, length, etc.), collect this data for transportation agencies (providing a low-cost alternative to mobile asset data collection vehicles), and for warning drivers of sharp horizontal curves, respectively. C-Finder is capable of accurately detecting horizontal curves by exploiting an unsupervised K-means machine learning technique. Butterworth low pass filtering was applied to reduce sensor noise. Extended Kalman filtering was adopted to improve GPS accuracy. Chord method-based radius computation, and superelevation estimation were introduced to achieve accurate and robust results despite of the low-frequency GPS and noisy sensor signals obtained from the smartphone. C-Alert applies BLE technology and a head-up display (HUD) to track driver speed and compare vehicle position with curve locations in a real-time fashion. Messages can be wirelessly communicated from the smartphone to a receiving unit through BLE technology, and then displayed by HUD on the vehicle’s front windshield. The field test demonstrated that C-Finder achieves high curve identification accuracy, reasonable accuracy for calculating curve radius and superelevation compared to the previous road survey studies, and C-Alert indicates relatively high accuracy for speeding warning when approaching sharp curves

    New Calibration Method Using Low Cost MEM IMUs to Verify the Performance of UAV-Borne MMS Payloads

    Get PDF
    Spatial information plays a critical role in remote sensing and mapping applications such as environment surveying and disaster monitoring. An Unmanned Aerial Vehicle (UAV)-borne mobile mapping system (MMS) can accomplish rapid spatial information acquisition under limited sky conditions with better mobility and flexibility than other means. This study proposes a long endurance Direct Geo-referencing (DG)-based fixed-wing UAV photogrammetric platform and two DG modules that each use different commercial Micro-Electro Mechanical Systems’ (MEMS) tactical grade Inertial Measurement Units (IMUs). Furthermore, this study develops a novel kinematic calibration method which includes lever arms, boresight angles and camera shutter delay to improve positioning accuracy. The new calibration method is then compared with the traditional calibration approach. The results show that the accuracy of the DG can be significantly improved by flying at a lower altitude using the new higher specification hardware. The new proposed method improves the accuracy of DG by about 20%. The preliminary results show that two-dimensional (2D) horizontal DG positioning accuracy is around 5.8 m at a flight height of 300 m using the newly designed tactical grade integrated Positioning and Orientation System (POS). The positioning accuracy in three-dimensions (3D) is less than 8 m

    A novel dynamical filter based on multi-epochs least-squares to integrate the carrier phase and pseudorange observation for GNSS measurement

    Get PDF
    © 2020 by the authors. The high noise of pseudorange and the ambiguity of carrier phase observation restrain the GNSS (Global Navigation Satellite System) application in military, industrial, and agricultural, to name a few. Thus, it is crucial for GNSS technology to integrate the pseudorange and carrier phase observations. However, the traditional method proposed by Hatch has obtained only a low convergence speed and precision. For higher convergence speed and precision of the smoothed pseudorange, aiming to improve positioning accuracy and expand the application of GNSS, we introduced a new method named MELS (Multi-Epochs Least-Squares) that considered the cross-correlation of the estimating parameters inspired by DELS (Double-Epochs Least-Square). In this study, the ionospheric delay was compensated, and so its impact was limited to the performance of the filters, and then exploited the various filters to integrate carrier phase observation and pseudorange. We compared the various types of Hatch's filter and LS (Least-Square) methods using simulation datasets, which confirmed that the types of LS method provided a smaller residual error and a faster convergence speed than Hatch's method under various precisions of raw pseudorange. The experimental results from the measured GNSS data showed that LS methods provided better performance than Hatch's methods at E and U directions and a lower accuracy at N direction. Nevertheless, the types of LS method and Hatch's methods improved about 12% and 9-10% at the 3D direction, respectively, which illustrated the accumulating improvement at the enhanced directions was more than the decreased direction, proving that the types of LS method resulted to better performance than the Hatch's filters. Additionally, the curve of residual and precision based on various LS methods illustrated that the MELS only provided a millimeter accuracy difference compared with DELS, which was proved by the simulated and measured GNSS datasets
    • …
    corecore