122 research outputs found

    Fault and Defect Tolerant Computer Architectures: Reliable Computing With Unreliable Devices

    Get PDF
    This research addresses design of a reliable computer from unreliable device technologies. A system architecture is developed for a fault and defect tolerant (FDT) computer. Trade-offs between different techniques are studied and yield and hardware cost models are developed. Fault and defect tolerant designs are created for the processor and the cache memory. Simulation results for the content-addressable memory (CAM)-based cache show 90% yield with device failure probabilities of 3 x 10(-6), three orders of magnitude better than non fault tolerant caches of the same size. The entire processor achieves 70% yield with device failure probabilities exceeding 10(-6). The required hardware redundancy is approximately 15 times that of a non-fault tolerant design. While larger than current FT designs, this architecture allows the use of devices much more likely to fail than silicon CMOS. As part of model development, an improved model is derived for NAND Multiplexing. The model is the first accurate model for small and medium amounts of redundancy. Previous models are extended to account for dependence between the inputs and produce more accurate results

    Evaluation of a Field Programmable Gate Array Circuit Reconfiguration System

    Get PDF
    This research implements a circuit reconfiguration system (CRS) to reconfigure a field programmable gate array (FPGA) in response to a faulty configurable logic block (CLB). It is assumed that the location of the fault is known and the CLB is moved according to one of four replacement methods: column left, column right, row up, and row down. Partial reconfiguration of the FPGA is done through the Joint Test Action Group (JTAG) port to produce the desired logic block movement. The time required to accomplish the reconfiguration is measured for each method in both clear and congested areas of the FPGA. The measured data indicate that there is no consistently better replacement method, regardless of the circuit congestion or location within the FPGA. Thus, given a specific location in the FPGA, there is no preferred replacement method that will result in the lowest reconfiguration time

    Optimizing Dynamic Logic Realizations For Partial Reconfiguration Of Field Programmable Gate Arrays

    Get PDF
    Many digital logic applications can take advantage of the reconfiguration capability of Field Programmable Gate Arrays (FPGAs) to dynamically patch design flaws, recover from faults, or time-multiplex between functions. Partial reconfiguration is the process by which a user modifies one or more modules residing on the FPGA device independently of the others. Partial Reconfiguration reduces the granularity of reconfiguration to be a set of columns or rectangular region of the device. Decreasing the granularity of reconfiguration results in reduced configuration filesizes and, thus, reduced configuration times. When compared to one bitstream of a non-partial reconfiguration implementation, smaller modules resulting in smaller bitstream filesizes allow an FPGA to implement many more hardware configurations with greater speed under similar storage requirements. To realize the benefits of partial reconfiguration in a wider range of applications, this thesis begins with a survey of FPGA fault-handling methods, which are compared using performance-based metrics. Performance analysis of the Genetic Algorithm (GA) Offline Recovery method is investigated and candidate solutions provided by the GA are partitioned by age to improve its efficiency. Parameters of this aging technique are optimized to increase the occurrence rate of complete repairs. Continuing the discussion of partial reconfiguration, the thesis develops a case-study application that implements one partial reconfiguration module to demonstrate the functionality and benefits of time multiplexing and reveal the improved efficiencies of the latest large-capacity FPGA architectures. The number of active partial reconfiguration modules implemented on a single FPGA device is increased from one to eight to implement a dynamic video-processing architecture for Discrete Cosine Transform and Motion Estimation functions to demonstrate a 55-fold reduction in bitstream storage requirements thus improving partial reconfiguration capability

    New Design Techniques for Dynamic Reconfigurable Architectures

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Zero-maintenance of electronic systems: Perspectives, challenges, and opportunities

    Get PDF
    Self-engineering systems that are capable of repairing themselves in-situ without the need for human decision (or intervention) could be used to achieve zero-maintenance. This philosophy is synonymous to the way in which the human body heals and repairs itself up to a point. This article synthesises issues related to an emerging area of self-healing technologies that links software and hardware mitigations strategies. Efforts are concentrated on built-in detection, masking and active mitigation that comprises self-recovery or self-repair capability, and has a focus on system resilience and recovering from fault events. Design techniques are critically reviewed to clarify the role of fault coverage, resource allocation and fault awareness, set in the context of existing and emerging printable/nanoscale manufacturing processes. The qualitative analysis presents new opportunities to form a view on the research required for a successful integration of zero-maintenance. Finally, the potential cost benefits and future trends are enumerated

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF
    • …
    corecore