550 research outputs found

    Novel Data-Driven Approach Based on Capsule Network for Intelligent Multi-Fault Detection in Electric Motors

    Get PDF

    An intelligent compound gear-bearing fault identification approach using Bessel kernel-based time-frequency distribution

    Get PDF
    The most crucial transmission components utilized in rotating machinery are gears and bearings. In a gearbox, the bearings support the force acting on the gears. Compound Faults in both the gears and bearings may cause heavy vibration and lead to early failure of components. Despite their importance, these compound faults are rarely studied since the vibration signals of the compound fault system are strongly dominated by noise. This work proposes an intelligent approach to fault identification of a compound gear-bearing system using a novel Bessel kernel-based Time-Frequency Distribution (TFD) called the Bessel transform. The Time-frequency images extracted using the Bessel transform are used as an input to the Convolutional Neural Network (CNN), which classifies the faults. The effectiveness of the proposed approach is validated with a case study, and a testing efficiency of 94% is achieved. Further, the proposed method is compared with the other TFDs and found to be effective

    Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals

    Get PDF
    Vibration measurement and monitoring are essential in a wide variety of applications. Vibration measurements are critical for diagnosing industrial machinery malfunctions because they provide information about the condition of the rotating equipment. Vibration analysis is considered the most effective method for predictive maintenance because it is used to troubleshoot instantaneous faults as well as periodic maintenance. Numerous studies conducted in this vein have been published in a variety of outlets. This review documents data-driven and recently published deep learning techniques for vibration-based condition monitoring. Numerous studies were obtained from two reputable indexing databases, Web of Science and Scopus. Following a thorough review, 59 studies were selected for synthesis. The selected studies are then systematically discussed to provide researchers with an in-depth view of deep learning-based fault diagnosis methods based on vibration signals. Additionally, a few remarks regarding future research directions are made, including graph-based neural networks, physics-informed ML, and a transformer convolutional network-based fault diagnosis method

    Hybridization of Capsule and LSTM Networks for unsupervised anomaly detection on multivariate data

    Get PDF
    This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.Deep learning techniques have recently shown promise in the field of anomaly detection, providing a flexible and effective method of modelling systems in comparison to traditional statistical modelling and signal processing-based methods. However, there are a few well publicised issues Neural Networks (NN)s face such as generalisation ability, requiring large volumes of labelled data to be able to train effectively and understanding spatial context in data. This paper introduces a novel NN architecture which hybridises the Long-Short-Term-Memory (LSTM) and Capsule Networks into a single network in a branched input Autoencoder architecture for use on multivariate time series data. The proposed method uses an unsupervised learning technique to overcome the issues with finding large volumes of labelled training data. Experimental results show that without hyperparameter optimisation, using Capsules significantly reduces overfitting and improves the training efficiency. Additionally, results also show that the branched input models can learn multivariate data more consistently with or without Capsules in comparison to the non-branched input models. The proposed model architecture was also tested on an open-source benchmark, where it achieved state-of-the-art performance in outlier detection, and overall performs best over the metrics tested in comparison to current state-of-the art methods

    Advanced Fault Diagnosis and Health Monitoring Techniques for Complex Engineering Systems

    Get PDF
    Over the last few decades, the field of fault diagnostics and structural health management has been experiencing rapid developments. The reliability, availability, and safety of engineering systems can be significantly improved by implementing multifaceted strategies of in situ diagnostics and prognostics. With the development of intelligence algorithms, smart sensors, and advanced data collection and modeling techniques, this challenging research area has been receiving ever-increasing attention in both fundamental research and engineering applications. This has been strongly supported by the extensive applications ranging from aerospace, automotive, transport, manufacturing, and processing industries to defense and infrastructure industries
    corecore