431 research outputs found

    Computational polarimetric microwave imaging

    Get PDF
    We propose a polarimetric microwave imaging technique that exploits recent advances in computational imaging. We utilize a frequency-diverse cavity-backed metasurface, allowing us to demonstrate high-resolution polarimetric imaging using a single transceiver and frequency sweep over the operational microwave bandwidth. The frequency-diverse metasurface imager greatly simplifies the system architecture compared with active arrays and other conventional microwave imaging approaches. We further develop the theoretical framework for computational polarimetric imaging and validate the approach experimentally using a multi-modal leaky cavity. The scalar approximation for the interaction between the radiated waves and the target---often applied in microwave computational imaging schemes---is thus extended to retrieve the susceptibility tensors, and hence providing additional information about the targets. Computational polarimetry has relevance for existing systems in the field that extract polarimetric imagery, and particular for ground observation. A growing number of short-range microwave imaging applications can also notably benefit from computational polarimetry, particularly for imaging objects that are difficult to reconstruct when assuming scalar estimations.Comment: 17 pages, 15 figure

    Development of Scale and Rotation Invariant Neural Network based Technique for Detection of Dielectric Contrast Concealed Targets with Millimeter Wave System

    Get PDF
    The detection of concealed targets beneath a person’s clothing from standoff distance is an important task for protection and the security of a person in a crowded place like shopping malls, airports and playground stadium, etc. The detection capability of the concealed weapon depends on a lot of factors likes, a collection of back scattered data, dielectric property and a thickness of covering cloths, the hidden object, standoff distance and the probability of false alarm owing to objectionable substances. Though active millimeter wave systems have used to detect weapons under cloths, but still more attention is required to detect the target likes a gun, knife, and matchbox. To observe such problems, active V-band (59 GHz- 61 GHz) MMW radar with the help of artificial neural network (ANN) has been demonstrated for non-metallic as well as metallic concealed target detection. To validate ANN, the signature of predefined targets is matched with the signature of validated data with the help of the correlation coefficient. The proposed technique has good capability to distinguish concealed targets under various cloths.

    Emerging Approaches for THz Array Imaging: A Tutorial Review and Software Tool

    Full text link
    Accelerated by the increasing attention drawn by 5G, 6G, and Internet of Things applications, communication and sensing technologies have rapidly evolved from millimeter-wave (mmWave) to terahertz (THz) in recent years. Enabled by significant advancements in electromagnetic (EM) hardware, mmWave and THz frequency regimes spanning 30 GHz to 300 GHz and 300 GHz to 3000 GHz, respectively, can be employed for a host of applications. The main feature of THz systems is high-bandwidth transmission, enabling ultra-high-resolution imaging and high-throughput communications; however, challenges in both the hardware and algorithmic arenas remain for the ubiquitous adoption of THz technology. Spectra comprising mmWave and THz frequencies are well-suited for synthetic aperture radar (SAR) imaging at sub-millimeter resolutions for a wide spectrum of tasks like material characterization and nondestructive testing (NDT). This article provides a tutorial review of systems and algorithms for THz SAR in the near-field with an emphasis on emerging algorithms that combine signal processing and machine learning techniques. As part of this study, an overview of classical and data-driven THz SAR algorithms is provided, focusing on object detection for security applications and SAR image super-resolution. We also discuss relevant issues, challenges, and future research directions for emerging algorithms and THz SAR, including standardization of system and algorithm benchmarking, adoption of state-of-the-art deep learning techniques, signal processing-optimized machine learning, and hybrid data-driven signal processing algorithms...Comment: Submitted to Proceedings of IEE

    An electromagnetic imaging system for metallic object detection and classification

    Get PDF
    PhD ThesisElectromagnetic imaging currently plays a vital role in various disciplines, from engineering to medical applications and is based upon the characteristics of electromagnetic fields and their interaction with the properties of materials. The detection and characterisation of metallic objects which pose a threat to safety is of great interest in relation to public and homeland security worldwide. Inspections are conducted under the prerequisite that is divested of all metallic objects. These inspection conditions are problematic in terms of the disruption of the movement of people and produce a soft target for terrorist attack. Thus, there is a need for a new generation of detection systems and information technologies which can provide an enhanced characterisation and discrimination capabilities. This thesis proposes an automatic metallic object detection and classification system. Two related topics have been addressed: to design and implement a new metallic object detection system; and to develop an appropriate signal processing algorithm to classify the targeted signatures. The new detection system uses an array of sensors in conjunction with pulsed excitation. The contributions of this research can be summarised as follows: (1) investigating the possibility of using magneto-resistance sensors for metallic object detection; (2) evaluating the proposed system by generating a database consisting of 12 real handguns with more than 20 objects used in daily life; (3) extracted features from the system outcomes using four feature categories referring to the objects’ shape, material composition, time-frequency signal analysis and transient pulse response; and (4) applying two classification methods to classify the objects into threats and non-threats, giving a successful classification rate of more than 92% using the feature combination and classification framework of the new system. The study concludes that novel magnetic field imaging system and their signal outputs can be used to detect, identify and classify metallic objects. In comparison with conventional induction-based walk-through metal detectors, the magneto-resistance sensor array-based system shows great potential for object identification and discrimination. This novel system design and signal processing achievement may be able to produce significant improvements in automatic threat object detection and classification applications.Iraqi Cultural Attaché, Londo

    Learning to Detect Open Carry and Concealed Object with 77GHz Radar

    Full text link
    Detecting harmful carried objects plays a key role in intelligent surveillance systems and has widespread applications, for example, in airport security. In this paper, we focus on the relatively unexplored area of using low-cost 77GHz mmWave radar for the carried objects detection problem. The proposed system is capable of real-time detecting three classes of objects - laptop, phone, and knife - under open carry and concealed cases where objects are hidden with clothes or bags. This capability is achieved by the initial signal processing for localization and generating range-azimuth-elevation image cubes, followed by a deep learning-based prediction network and a multi-shot post-processing module for detecting objects. Extensive experiments for validating the system performance on detecting open carry and concealed objects have been presented with a self-built radar-camera testbed and collected dataset. Additionally, the influence of different input formats, factors, and parameters on system performance is analyzed, providing an intuitive understanding of the system. This system would be the very first baseline for other future works aiming to detect carried objects using 77GHz radar.Comment: 12 page

    Towards Large-scale Single-shot Millimeter-wave Imaging for Low-cost Security Inspection

    Full text link
    Millimeter-wave (MMW) imaging is emerging as a promising technique for safe security inspection. It achieves a delicate balance between imaging resolution, penetrability and human safety, resulting in higher resolution compared to low-frequency microwave, stronger penetrability compared to visible light, and stronger safety compared to X ray. Despite of recent advance in the last decades, the high cost of requisite large-scale antenna array hinders widespread adoption of MMW imaging in practice. To tackle this challenge, we report a large-scale single-shot MMW imaging framework using sparse antenna array, achieving low-cost but high-fidelity security inspection under an interpretable learning scheme. We first collected extensive full-sampled MMW echoes to study the statistical ranking of each element in the large-scale array. These elements are then sampled based on the ranking, building the experimentally optimal sparse sampling strategy that reduces the cost of antenna array by up to one order of magnitude. Additionally, we derived an untrained interpretable learning scheme, which realizes robust and accurate image reconstruction from sparsely sampled echoes. Last, we developed a neural network for automatic object detection, and experimentally demonstrated successful detection of concealed centimeter-sized targets using 10% sparse array, whereas all the other contemporary approaches failed at the same sample sampling ratio. The performance of the reported technique presents higher than 50% superiority over the existing MMW imaging schemes on various metrics including precision, recall, and mAP50. With such strong detection ability and order-of-magnitude cost reduction, we anticipate that this technique provides a practical way for large-scale single-shot MMW imaging, and could advocate its further practical applications

    High-resolution three-dimensional imaging radar

    Get PDF
    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband

    Indoor Full-Body Security Screening: Radiometric Microwave Imaging Phenomenology and Polarimetric Scene Simulation

    Get PDF
    The paper discusses the scene simulation of radiometric imagers and its use to illustrate the phenomenology of full-body screening of people for weapons and threats concealed under clothing. The aperture synthesis technique is introduced as this offers benefits of wide field-of-views and large depths-of-fields in a system that is potentially conformally deployable in the confined spaces of building entrances and at airport departure lounges. The technique offers a non-invasive, non-cooperative screening capability to scrutinize all human body surfaces for illegal items. However, for indoor operation, the realization of this capability is challenging due to the low radiation temperature contrasts in imagery. The contrast is quantified using a polarimetric radiometric layer model of the clothed human subject concealing threats. A radiation frequency of 20 GHz was chosen for the simulation as system component costs here are relatively low and the attainable half-wavelength spatial resolution of 7.5 mm is sufficient for screening. The contrasts against the human body of the threat materials of metal, zirconia ceramic, carbon fiber, nitrogen-based energetic materials, yellow beeswax, and water were calculated to be ≤7 K. Furthermore, the model indicates how some threats frequency modulate the radiation temperatures by ~ ±1 K. These results are confirmed by experiments using a radiometer measuring left-hand circularly polarized radiation. It is also shown using scene simulation how circularly polarized radiation has benefits for reducing false alarms and how threat objects appear in canyon regions of the body, such as between the legs and in the armpits

    A Review of Indoor Millimeter Wave Device-based Localization and Device-free Sensing Technologies and Applications

    Full text link
    The commercial availability of low-cost millimeter wave (mmWave) communication and radar devices is starting to improve the penetration of such technologies in consumer markets, paving the way for large-scale and dense deployments in fifth-generation (5G)-and-beyond as well as 6G networks. At the same time, pervasive mmWave access will enable device localization and device-free sensing with unprecedented accuracy, especially with respect to sub-6 GHz commercial-grade devices. This paper surveys the state of the art in device-based localization and device-free sensing using mmWave communication and radar devices, with a focus on indoor deployments. We first overview key concepts about mmWave signal propagation and system design. Then, we provide a detailed account of approaches and algorithms for localization and sensing enabled by mmWaves. We consider several dimensions in our analysis, including the main objectives, techniques, and performance of each work, whether each research reached some degree of implementation, and which hardware platforms were used for this purpose. We conclude by discussing that better algorithms for consumer-grade devices, data fusion methods for dense deployments, as well as an educated application of machine learning methods are promising, relevant and timely research directions.Comment: 43 pages, 13 figures. Accepted in IEEE Communications Surveys & Tutorials (IEEE COMST
    • …
    corecore