6,843 research outputs found

    Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images

    Full text link
    Iris centre localization in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks, etc. This paper proposes an efficient method for determining iris centre in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for iris centre localization. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution based approach is used for obtaining the coarse location of iris centre (IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases like BioID, Gi4E and is found to outperform the state of the art methods.Comment: 12 pages, 10 figures, IET Computer Vision, 201

    Shift Estimation Algorithm for Dynamic Sensors With Frame-to-Frame Variation in Their Spectral Response

    Get PDF
    This study is motivated by the emergence of a new class of tunable infrared spectral-imaging sensors that offer the ability to dynamically vary the sensor\u27s intrinsic spectral response from frame to frame in an electronically controlled fashion. A manifestation of this is when a sequence of dissimilar spectral responses is periodically realized, whereby in every period of acquired imagery, each frame is associated with a distinct spectral band. Traditional scene-based global shift estimation algorithms are not applicable to such spectrally heterogeneous video sequences, as a pixel value may change from frame to frame as a result of both global motion and varying spectral response. In this paper, a novel algorithm is proposed and examined to fuse a series of coarse global shift estimates between periodically sampled pairs of nonadjacent frames to estimate motion between consecutive frames; each pair corresponds to two nonadjacent frames of the same spectral band. The proposed algorithm outperforms three alternative methods, with the average error being one half of that obtained by using an equal weights version of the proposed algorithm, one-fourth of that obtained by using a simple linear interpolation method, and one-twentieth of that obtained by using a naiĀæve correlation-based direct method

    Coarse iris classification based on box-counting method

    Get PDF
    Author name used in this publication: David ZhangRefereed conference paper2005-2006 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ā€˜shotā€™ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ā€˜broadcastā€™ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features
    • ā€¦
    corecore