4,454 research outputs found

    A modified particle swarm optimization based maximum power point tracking for photovoltaic converter system

    Get PDF
    This thesis presents a modified Particle Swarm Optimization based Maximum Power Point Tracking for Photovoltaic Converter system. All over the world, many governments are striving to exploit the vast potential of renewable energy to meet the growing energy requirements mainly when the price of oil is high. Maximum Power Point Tracking (MPPT) is a method that ensures power generated in Photovoltaic (PV) systems is optimized under various conditions. Due to partial shading or change in irradiance and temperature conditions in PV, the power-voltage characteristics exhibit multiple local peaks; one such phenomenon is the global peak. These conditions make it very challenging for MPPT to locate the global maximum power point. Many MPPT algorithms have been proposed for this purpose. In this thesis, a modified Particle Swarm Optimisation (PSO)-based MPPT method for PV systems is proposed. Unlike the conventional PSO-based MPPT methods, the proposed method accelerates convergence of the PSO algorithm by consistently decreasing weighting factor, cognitive and social parameters thus reducing the steps of iterations and improved the tracking response time. The advantage of the proposed method is that it requires fewer search steps (converges to the desired solution in a reasonable time) compared to other MPPT methods. It requires only the idea of series cells; thus, it is system independent. The control scheme was first created in MATLAB/Simulink and compared with other MPPT methods and then validated using hardware implementation. The TMS320F28335 eZDSP board was used for implementing the developed control algorithm. The results show good performance in terms of speed of convergence and also guaranteed convergence to global MPP with faster time response compared to the other MPPT methods under typical conditions (partial shading, change in irradiance and temperature, load profile). This demonstrates the effectiveness of the proposed method

    Design and characterisation of a novel translucent solar concentrator

    Get PDF
    This thesis begins with an investigation into the optical performances of the Crossed Compound Parabolic Concentrator (CCPC) for photovoltaic application and introduces the novel concept of a Translucent Integrated Concentrated Photovoltaic (TICPV). The use of solar concentrators in BIPV enables a reduction in the cost of generating photovoltaic electricity lending to yet another field of research known as Building Integrated Concentrated Photovoltaics (BICPV). The potential of BICPV as the most promising technologies for future electricity supply is examined by the design, optimisation and testing of the main component of the TICPV, a novel static nonimaging transparent 3-D concentrator coined the Square Elliptical Hyperboloid (SEH), for the use in building fenestrations. The SEH concentrator was designed and optimised via ray-tracing technique. A preliminary investigation into the optical efficiencies of 160 SEH concentrators of varying geometries was conducted and from this 20 concentrators were chosen and studied in more detail using the developed optical model with the aim of obtaining an optimised SEH concentrator out of these 20. The optimisation process proved to be far from straightforward, however, after careful consideration, five SEH concentrators with the best optical performances, each with different heights, were chosen. These concentrators were fabricated and used to assemble five separate TICPV modules. Subsequent to carrying out the simulation, the five optimised TICPV modules were examined in different environments (indoor and outdoor). The results of the indoor test, where the TICPV modules are exposed to direct radiation from a solar simulator, provided clear validation of the optical model; the results of the outdoor test added further to the validation and confirmed the power output of the TICPV modules when exposed to both direct and diffuse radiations. The TICPV modules are developed in a way such that they collect sunlight during most of the hours throughout the day, allowing the generation of electrical power whilst maintaining the level of transparency of the fenestration. It was found that the TICPV modules are capable of saving more than 60% of the solar cells used in conventional flat PV systems. The designed TICPV modules simultaneously provide solar energy generation and optimised day lighting. The TICPV module designed in this thesis provides a viable solution to coping with the increasing energy demands and will create a new age of energy efficient buildings reducing the carbon footprint of both existing buildings and buildings of the future

    PV Parameter Identification using Reduced I-V Data

    Get PDF
    In this paper, possibility and accuracy of using reduced I-V data in PV parameter identification are discussed. Based on the linear identification method proposed in [1], six I-V points are used instead of the whole I-V curve to identify the PV parameters. The maximum power point (MPP) is then estimated using the identified I-V and P-V characteristics. Validation is done by using different sets of six points on the I-V curve. Experiment results show that the accurate curve fitting (with low RMSE and MPE) and good estimation of MPP can be achieved

    Design and Implementation of Control Techniques of Power Electronic Interfaces for Photovoltaic Power Systems

    Get PDF
    The aim of this thesis is to scrutinize and develop four state-of-the-art power electronics converter control techniques utilized in various photovoltaic (PV) power conversion schemes accounting for maximum power extraction and efficiency. First, Cascade Proportional and Integral (PI) Controller-Based Robust Model Reference Adaptive Control (MRAC) of a DC-DC boost converter has been designed and investigated. Non-minimum phase behaviour of the boost converter due to right half plane zero constitutes a challenge and its non-linear dynamics complicate the control process while operating in continuous conduction mode (CCM). The proposed control scheme efficiently resolved complications and challenges by using features of cascade PI control loop in combination with properties of MRAC. The accuracy of the proposed control system’s ability to track the desired signals and regulate the plant process variables in the most beneficial and optimised way without delay and overshoot is verified. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed two times with considerably improved disturbance rejection. Second, (P)roportional Gain (R)esonant and Gain Scheduled (P)roportional (PR-P) Controller has been designed and investigated. The aim of this controller is to create a variable perturbation size real-time adaptive perturb and observe (P&O) maximum power point tracking (MPPT) algorithm. The proposed control scheme resolved the drawbacks of conventional P&O MPPT method associated with the use of constant perturbation size that leads to a poor transient response and high continuous steady-state oscillations. The prime objective of using the PR-P controller is to utilize inherited properties of the signal produced by the controller’s resonant path and integrate it to update best estimated perturbation that represents the working principle of extremum seeking control (ESC) to use in a P&O algorithm that characterizes the overall system learning-based real time adaptive (RTA). Additionally, utilization of internal dynamics of the PR-P controller overcome the challenges namely, complexity, computational burden, implantation cost and slow tracking performance in association with commonly used soft computing intelligent systems and adaptive control strategies. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed five times with reduced steady-state oscillations around maximum power point (MPP) and more than 99% energy extracting efficiency.Third, the interleaved buck converter based photovoltaic (PV) emulator current control has been investigated. A proportional-resonant-proportional (PR-P) controller is designed to resolve the drawbacks of conventional PI controllers in terms of phase management which means balancing currents evenly between active phases to avoid thermally stressing and provide optimal ripple cancellation in the presence of parameter uncertainties. The proposed controller shows superior performance in terms of 10 times faster-converging transient response, zero steady-state error with significant reduction in current ripple. Equal load sharing that constitutes the primary concern in multi-phase converters has been achieved with the proposed controller. Implementing of robust control theory involving comprehensive time and frequency domain analysis reveals 13% improvement in the robust stability margin and 12-degree bigger phase toleration with the PR-P controller. Fourth, a symmetrical pole placement Method-based Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller has been designed and investigated. The proposed PR-P controller resolved the issues associated with the use of the PI controller which are tracking repeating control input signal with zero steady-state and mitigating the 3rd order harmonic component injected into the grid for single-phase PV systems. Additionally, the PR-P controller has overcome the drawbacks of frequency detuning in the grid and increase in the magnitude of odd number harmonics in the system that constitute the common concerns in the implementation of conventional PR controller. Moreover, the unprecedented design process based on changing notch filter dynamics with symmetrical pole placement around resonant frequency overcomes the limitations that are essentially complexity and dependency on the precisely modelled system. The verification and validation process of the proposed control schemes has been conducted using MATLAB/Simulink and implementing MATLAB/Simulink/State flow on dSPACE Real-time-interface (RTI) 1007 processor, DS2004 High-Speed A/D and CP4002 Timing and Digital I/O boards

    A Novel Cooperative Controller for Inverters of Smart Hybrid AC/DC Microgrids

    Get PDF
    This paper presents a novel cooperative control technique concerning fully-distributed AC/DC microgrids. Distributed generation based on inverters has two types, i.e., Current Source Inverter (CSI), also referred to as PQ inverter, and Voltage Source Inverter (VSI). Both inverter forms have a two-layer coordination mechanism. This paper proposes a design method for the digital Proportional-Resonant (PR) controller that regulates the current inside an inverter. The inverters will improve the voltage quality of the microgrid while maintaining the average voltage of buses at the same desired level. There is comprehensive detail on the computations specific to resonant and proportional gains and digital resonance path coefficients. The paper includes a digital PR controller design and its analysis in the frequency domain. The analysis is based on the w-domain. The main contribution of this paper is the proposed method, which not only focuses on the transient response but also improves the steady-state response which smoothens the voltage; furthermore, all inverters are effectively involved to increase the capacity of the microgrid for better power management. The suggested cooperative control technique is used on an IEEE 14-bus system having fully distributed communication. The convincing outcomes indicate that the suggested control technique is an effectual means of regulating the microgrid’s voltage to obtain an evener and steady voltage profile. The microgrid comprises distributed resources and is used as the primary element to analyse power flow and quality indicators associated with a smart grid. Lastly, numerical simulation observations are utilised for substantiating the recommended algorithm

    Small-signal modelling of maximum power point tracking for photovoltaic systems

    Get PDF
    In grid connected photovoltaic (PV) generation systems, inverters are used to convert the generated DC voltage to an AC voltage. An additional dc-dc converter is usually connected between the PV source and the inverter for Maximum Power Point Tracking (MPPT). An iterative MPPT algorithm searches for the optimum operating point of PV cells to maximise the output power under various atmospheric conditions. It is desirable to be able to represent the dynamics of the changing PV power yield within stability studies of the AC network. Unfortunately MPPT algorithms tend to be nonlinear and/or time-varying and cannot be easily combined with linear models of other system elements. In this work a new MPPT technique is developed in order to enable linear analysis of the PV system over reasonable time scales. The new MPPT method is based on interpolation and an emulated-load control technique. Numerical analysis and simulations are employed to develop and refine the MPPT. The small-signal modelling of the MPPT technique exploits the fact that the emulated-load control technique can be linearised and that short periods of interpolation can be neglected. A small-signal PV system model for variable irradiation conditions was developed. The PV system includes a PV module, a dc-dc boost converter, the proposed controller and a variety of possible loads. The new model was verified by component-level time-domain simulations. Be cause measured signals in PV systems contain noise, it is important to assess the impact of that noise on the MPPT and design an algorithm that operates effectively in pr esence of noise. For performance assessment of the new MPPT techniques, the efficiencies of various MPPT techniques in presence of noise were compared. This comparison showed superiority of the interpolation MPPT and led to conclusions about effective use of existing MPPT methods. The new MPPT method was also experimentally tested.Open Acces

    Hole making process of carbon fiber reinforced polymer (CFRP) using end mill cutting tool

    Get PDF
    This paper presents an alternative way of producing a hole by using a helical milling concept on a carbon fiber reinforced polymer (CFRP). Delamination is a major problem associated with making a hole by drilling on the CFRP. This study focused on helical milling technique using a vertical machining center in order to produce a hole. Various levels of cutting parameter such as cutting speed, feed rate and depth of cut have been chosen to observe the effect of trust force, delamination and surface roughness. The result will be used to determine on which cutting parameters give the best hole quality that will achieved by this new approached

    A Novel MPPT Technique based on Hybrid Radial Movement Optimization with Teaching Learning Based Optimization for PV system

    Get PDF
    Because of its pure and plentiful accessibility, solar power is a remarkable resource of energy for the generation of electrical power. The solar photovoltaic mechanism transforms sunlight striking the photovoltaic solar panel or array of photovoltaic panels directly into non-linear DC power. Due to the nonlinear characteristics of solar photovoltaic panels, power must be tracked for their effective usage. When the photovoltaic arrays are shaded, the problem of nonlinearity becomes more pronounced, resulting in large power loss and intensive heating in a few areas of the photovoltaic arrangement. The tracking challenge is made more difficult by the fact that bypass diodes, which are used to completely eradicate the shading effect, generate numerous power peak levels on the power vs. voltage (P-V) curve. Traditional methods for tracing the global peak point are unable to examine the entire P-V curve as they frequently get stuck at the local peak point. Recently, machine learning or optimization algorithms have been used to determine the global peak point. Because these algorithms are random, they search the entire search area, reducing the possibility of being caught in the local maximum value. This article proposes a hybrid of two optimization approaches: radial movement optimization and teaching-learning optimization (HRMOTLBO). The proposed MPPT method was thoroughly investigated and tested in a wide range of photovoltaic partial shading combinations. The recommended HRMOTLBO MPPT approach outperforms and is more reliable than a recent Jaya-based MPPT approach in terms of tracing time and power variation under dynamic and static partial shading conditions. Experimental as well as simulation outcomes demonstrate that the proposed MPPT successfully traces the global peak point in less time and with fewer fluctuations during various partial shading conditions

    Performance evaluation of the photovoltaic system

    Get PDF
    The various renewable energy source technologies, Photovoltaics (PV) transforming sunlight directly into electricity, have become standard practice worldwide, especially in countries with high solar radiation levels. PV systems have been developed rapidly over recent years, and many new technologies have emerged from different producers. For each type of PV module, manufacturers provide specific information on rated performance parameters, including power at maximum power point (MPP), efficiency and temperature factors, all under standard solar test conditions (STC) 1000 W/m2. Air. In addition, the mass (AM) of 1.5 and the cell's temperature was 25 ̊C. Unfortunately, this grouping of environmental conditions is infrequently found in outdoor conditions. Also, the data provided by the manufacturers are not sufficient to accurately predict the performance of photovoltaic systems in various climatic conditions. Therefore, monitoring and evaluating the performance of the off-site systems is necessary. This thesis aims to overview various photovoltaic technologies, ranging from crystalline silicon (c-SI) to thin-film CdTe and GiCs. The following are the main parameters for evaluating the external units' performance to describe the PV systems' operation and implementation. In addition, a review of the impacts of various environmental and operational factors, such as solar radiation, temperature, spectrum, and degradation
    corecore