10,799 research outputs found

    An oil painters recognition method based on cluster multiple kernel learning algorithm

    Get PDF
    A lot of image processing research works focus on natural images, such as in classification, clustering, and the research on the recognition of artworks (such as oil paintings), from feature extraction to classifier design, is relatively few. This paper focuses on oil painter recognition and tries to find the mobile application to recognize the painter. This paper proposes a cluster multiple kernel learning algorithm, which extracts oil painting features from three aspects: color, texture, and spatial layout, and generates multiple candidate kernels with different kernel functions. With the results of clustering numerous candidate kernels, we selected the sub-kernels with better classification performance, and use the traditional multiple kernel learning algorithm to carry out the multi-feature fusion classification. The algorithm achieves a better result on the Painting91 than using traditional multiple kernel learning directly

    Bi-Objective Nonnegative Matrix Factorization: Linear Versus Kernel-Based Models

    Full text link
    Nonnegative matrix factorization (NMF) is a powerful class of feature extraction techniques that has been successfully applied in many fields, namely in signal and image processing. Current NMF techniques have been limited to a single-objective problem in either its linear or nonlinear kernel-based formulation. In this paper, we propose to revisit the NMF as a multi-objective problem, in particular a bi-objective one, where the objective functions defined in both input and feature spaces are taken into account. By taking the advantage of the sum-weighted method from the literature of multi-objective optimization, the proposed bi-objective NMF determines a set of nondominated, Pareto optimal, solutions instead of a single optimal decomposition. Moreover, the corresponding Pareto front is studied and approximated. Experimental results on unmixing real hyperspectral images confirm the efficiency of the proposed bi-objective NMF compared with the state-of-the-art methods
    corecore